Tính giá trị biểu thức
2 5 + 1 3 × 1 4 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{11}{2}\): \(\dfrac{1}{4}\) \(\times\) \(\dfrac{5}{3}\)
= \(\dfrac{11}{2}\) \(\times\) \(\dfrac{4}{1}\) \(\times\) \(\dfrac{5}{3}\)
= 22 \(\times\) \(\dfrac{5}{3}\)
= \(\dfrac{110}{3}\)
\(\dfrac{5}{2}-\dfrac{1}{4}+\dfrac{5}{3}\)
= \(\dfrac{30}{12}-\dfrac{3}{12}+\dfrac{20}{12}\)
= \(\dfrac{7}{12}\)
\(\dfrac{14}{5}\times\dfrac{2}{3}\)+ 5
= \(\dfrac{28}{15}\) + 5
= \(\dfrac{28}{15}\) + \(\dfrac{75}{15}\)
= \(\dfrac{103}{15}\)
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
\(\text{A}=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\frac{1}{2}.\text{A}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{99}{2^{100}}+\frac{100}{2^{101}}\)
\(=\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right]-\frac{100}{2^{101}}\left(\text{do}\frac{3}{2^3}=\frac{1}{2^2}+\frac{1}{2^3}\right)\)
\(=\frac{\left[1-\left(\frac{1}{2}\right)^{101}\right]}{\left(1-\frac{1}{2}\right)}-\frac{100}{2^{101}}\)
\(=\frac{\left(2^{101}-1\right)}{2^{100}}-\frac{100}{2^{101}}\)
\(\Rightarrow\text{A}=\frac{\left(2^{101}-1\right)}{2^{99}}-\frac{100}{2^{101}}\)
P/s: Sai đâu thì bn sửa nhé.
`@` `\text {Ans}`
`\downarrow`
`(1/2-1/3+1/4-1/5):(1/4-1/5)`
`=`\(\left(\dfrac{1}{6}+\dfrac{1}{20}\right)\div\dfrac{1}{20}\)
`=`\(\dfrac{1}{20}\div\dfrac{1}{20}+\dfrac{1}{6}\div\dfrac{1}{20}\)
`= 1+10/3`
`= 13/3`
A = (\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)): (\(\dfrac{1}{4}\) - \(\dfrac{1}{5}\))
A = ( \(\dfrac{30}{60}\) - \(\dfrac{20}{60}\) + \(\dfrac{15}{60}\) - \(\dfrac{12}{60}\)):(\(\dfrac{5}{20}\) - \(\dfrac{4}{20}\))
A = \(\dfrac{13}{60}\): \(\dfrac{1}{20}\)
A = \(\dfrac{13}{60}\times\dfrac{20}{1}\)
A = \(\dfrac{13}{3}\)
29/60