Hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 8 ngày. Hỏi nếu A làm riêng hết 1 3 công việc rồi nghỉ thì B hoàn thành nốt công việc trong thời gian bao lâu? Biết rằng nếu làm một mình xong công việc thì A làm nhanh hơn B là 12 ngày.
A. 16 ngày
B. 18 ngày
C. 10 ngày
D. 12 ngày
Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 0; y > 12, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được 1 x và 1 y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 8 ngày nên ta có: 1 x + 1 y = 1 8 (1)
Do làm một mình xong công việc thì B làm lâu hơn A là 12 ngày nên ta có phương trình: y – x = 12 (2)
Từ (1) và (2) ta có hệ phương trình 1 x + 1 y = 1 8 y − x = 12 ⇒ y = x + 12 1 x + 1 x + 12 = 1 8 ( * )
Giải (*):
1 x + 1 x + 12 = 1 8 ⇔ 8 x + 12 + 8 x 8 x x + 12 = x x + 12 8 x x + 12 ⇒ 16 x + 96 = x 2 + 12 x
x 2 – 4 x – 96 = 0 ⇔ x 2 + 8 x – 12 x – 96 = 0 ⇔ x ( x + 8 ) – 12 ( x + 8 ) = 0
⇔ ( x – 12 ) ( x + 8 ) = 0 ⇔ x = 12 ( N ) x = − 8 ( L )
Với x = 12 ⇒ y = x + 12 = 24
Vậy B hoàn thành cả công việc trong 24 ngày
Suy ra sau khi A làm một mình xong 1 3 công việc rồi nghỉ, B hoàn thành 2 3 công việc cong lại trong 2 3 .24 = 16 ngày.
Đáp án: A
Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 6, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được 1 x và 1 y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 6 ngày nên ta có: 1 x + 1 y = 1 6 (1)
Do làm một mình xong công việc thì B làm lâu hơn A là 9 ngày nên ta có phương trình: y – x = 9 (2)
Từ (1) và (2) ta có hệ phương trình:
1 x + 1 y = 1 6 y − x = 9 ⇒ x = 9 y = 18 (thỏa mãn)
Vậy B hoàn thành cả công việc trong 18 ngày.
Suy ra sau khi A làm một mình xong nửa công việc rồi nghỉ, B hoàn thành công việc còn lại trong 9 ngày