Cho tam giác AMNP vuông tại M. Kẻ M K ⊥ N P ( K ∈ N P ) . Tia phân giác của góc PMK cắt NP tại I. Chứng minh N M I ^ = N I M ^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)
Vì MI là tia phân giác \(\widehat{KMP}\)
=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)
=> Tam giác NMI cân tại N
=> NM = NI ( đpcm )
a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:
\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)
\(NK\) là cạnh chung
\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)
b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)
\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MNQ\) cân tại \(N\)
Mà \(\widehat{MNQ}=60^o\)
\(\Rightarrow\Delta MNQ\) đều
Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)
\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)
\(\Rightarrow\Delta NKP\) cân tại \(K\)
c) Vì \(\Delta NMQ\) đều (chứng minh trên)
\(\Rightarrow NM=MQ=NQ=8cm\)
Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:
\(PN=2MN=2.8=16cm\)
\(\Rightarrow PQ=16-8=8cm\)
a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có
NK chung
\(\widehat{MNK}=\widehat{QNK}\)
Do đó: ΔMNK=ΔQNK
b: Ta có: ΔMNK=ΔQNK
nên NM=NQ
=>ΔNMQ cân tại N
mà \(\widehat{MNQ}=60^0\)
nên ΔMNQ đều
Xét ΔNKQ có
\(\widehat{KPN}=\widehat{KNP}\)
nên ΔNKQ cân tại K
c: Xét ΔMNP vuông tại M có
\(\cos N=\dfrac{MN}{NP}\)
=>NP=16(cm)
=>\(MP=8\sqrt{3}\left(cm\right)\)
1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có
MK chung
góc IMK=góc AMK
=>ΔMIK=ΔMAK
=>góc IKM=góc AKM
=>KM là phân giác của góc AKI
2: KI=KA
KA<KP
=>KI<KP
3: Xét ΔMBP có
PI,BA là đường cao
PI cắt BA tại K
=>K là trực tâm
=>MK vuông góc PB
MI=MA
KI=KA
=>MK là trung trực của AI
=>MK vuông góc AI
=>AI//PB