Tính diện tích của hình phẳng giới hạn bởi các đường sau: y = 1 x + 1 ,x=1 và tiếp tuyến với đường y = 1 x + 1 tại điểm (2; 3/2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đáp số: 1/6
b) Đáp số: 937/12.
Hướng dẫn:
c) Đáp số: 2
Hướng dẫn:
d) π/2 - 1
Hướng dẫn:
Đặt x = tan t để tính
e) Đáp số: 27/4
Hướng dẫn: Phương trình tiếp tuyến tại (-1; -2) là y = 3x + 1. Do đó, diện tích :
Đáp số: 27/4
Hướng dẫn: Phương trình tiếp tuyến tại (-1; -2) là y = 3x + 1. Do đó, diện tích :
Hai hàm số y = | x 2 – 1| và y = 5 + |x| đều là hàm số chẵn. Miền cần tính diện tích được thể hiện ở Hình 8. Do tính đối xứng qua trục tung, ta có:
8/81.
Hướng dẫn: Đường thẳng y = (x − 1)/9 đi qua tâm đối xứng của hàm số y = x 3 - x 2 .
Do đó, hình phẳng giới hạn bởi hai đường đã cho gồm hai hình vẽ đối xứng nhau qua điểm I (hình 85).
Vậy:
(theo bài 3.14. )
Phương trình hoành độ giao điểm của hai đường cong là
x 2 + x - 1 = x 4 + x - 1 ⇔ x 2 - x 4 = 0 ⇔ x ∈ 0 ; 1 ; - 1
Khi đó diện tích cần tìm là
S = ∫ - 1 1 x 2 - x 4 d x = ∫ - 1 0 x 2 - x 4 d x + ∫ 0 1 x 2 - x 4 d x = x 3 3 - x 5 5 - 1 0 + x 3 3 - x 5 5 0 1 = 4 15
Đáp án A
Đáp án A
Phương trình hoành độ giao điểm e x = 2 ⇔ x = ln 2
Suy ra diện tích cần tìm bằng S = ∫ 0 ln 2 e x - 2 d x + ∫ ln 2 0 e x - 2 d x = 4 ln 2 + e - 5 .
Miền cần tính diện tích được thể hiện trên Hình 10:
(vì tiếp tuyến với đồ thị của
tại điểm (2;3/2) có phương trình là