K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

Chọn A

Gọi M là trung điểm của BC, suy ra O M ⊥ B C .

Ta có S B C ; A B C D ^ = S M O ^ = 45 o .

Ta có

A C 2 = A B 2 + B C 2 = 4 a 2 ⇒ A B = B C = a 2 . O M = 1 2 A B = a 2 2 ⇒ S O = a 2 2 . tan 45 o = a 2 2 .

Vậy V S . A B C D = 1 3 . S O . S A B C D = 1 3 . a 2 2 . a 2 2 = 2 a 3 3 . 

 

26 tháng 8 2018

5 tháng 11 2017

Đáp án A

.

1 tháng 8 2017

8 tháng 9 2017

Đáp án C

=> SA = AB = a

2 tháng 4 2016

S D C I A K B

\(\begin{cases}\left(SIB\right)\perp\left(ABCD\right)\\\left(SIC\right)\perp\left(ABCD\right)\end{cases}\) \(\Rightarrow SI\perp\left(ABCD\right)\)

Kẻ \(IK\perp BC\left(K\in BC\right)\Rightarrow BC\perp\left(SIK\right)\)\(\Rightarrow\widehat{SKI}=60^0\)

Diện tích hình thang ABCD : \(S_{ABCD}=3a^2\)

Tổng diện tích các tam giá ABI và CDI bằng \(\frac{3a^2}{2}\) Suy ra \(S_{\Delta IBC}=\frac{3a^2}{2}\)

\(BC=\sqrt{\left(AB-CD\right)^2+AD^2}=a\sqrt{5}\)

\(\Rightarrow IK=\frac{2S_{\Delta IBC}}{BC}=\frac{3\sqrt{5}a}{5}\)

\(\Rightarrow SI=IK.\tan\widehat{SKI}=\frac{3\sqrt{15}a}{5}\)

Thể tích của khối chóp S.ABCD : \(V=\frac{1}{3}S_{ABCD}.SI=\frac{3\sqrt{15}a^2}{5}\)

 

27 tháng 8 2018

Đáp án phải là \(\dfrac{3a^3\sqrt{15}}{5}\)

7 tháng 2 2017

Đáp án D

 

18 tháng 2 2017

Đáp án là A

Tính được:   I B = a 5 ; I C = a 2 ;   B C = a 5 ;

S A B C D = 3 a 2 ; I K = 3 a 5 ; ​​  S I = 3 a 15 5

Vậy:  V S . A B C D = 1 3 S I . S A B C D = 3 a 3 15 5 .

22 tháng 8 2018

Đáp án D

Vì S A ⊥ ( A B C D ) B C ⊥ A B ⇒ B C ⊥ ( S A B ) ⇒ S B C ; A B C D ^ = S B A ^  

Tam giác SAB vuông tại A, có tan S B A ^ = S A A B ⇒ S A = 2 a . tan 30 ° = 2 a 3  

Thể tích khối chóp S.ABCD là V = 1 3 S A . S A B C D = 1 3 2 a 3 4 a 2 = 8 a 3 2 9  
Vậy tỉ số 
3 V a 3 = 24 a 3 3 9 : a 3 = 8 3 3

24 tháng 3 2018