Trong các số phức z thỏa mãn điều kiện |z – 1 – 2i| = 2, tìm số phức z có môđun nhỏ nhất.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
23 tháng 7 2019
Chọn C.
Do đó tập hợp các điểm biểu diễn số phức z là đường thẳng có phương trình x + y – 4 = 0
Mặt khác
Chọn C.
Gọi z = x + yi và M (x; y) là điểm biểu diễn số phức.
Ta có : |z – 1 – 2i| = 2 hay ( x - 1) 2 + (y - 2)2 = 4
Đường tròn (C): ( x - 1)2 + (y - 2)2 = 4 có tâm I(1; 2). Đường thẳng OI có phương trình y = 2x
Số phức z thỏa mãn điều kiện và có môdun nhỏ nhất khi và chỉ khi điểm biểu diễn số phức đó thuộc đường tròn (C) và gần gốc tọa độ O nhất, điểm đó chỉ là một trong hai giao điểm của đường thẳng OI với (C), khi đó tọa độ của nó thỏa mãn hệ
hoặc
Chọn nên số phức