K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

A. (SAC) ∩ (SBD) = SO

B. (SAB) ∩ (SCD) = SE

C. (SAD) ∩ (SBC) = xy

D. nếu S, A, C, D cùng nằm trong một mặt phẳng thì S ∈ (ACD) mâu thuẫn với giả thiết S.ABCD là hình chóp

Đáp án D

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

a) Gọi giao điểm của AD và BC là K.

Ta có: SK cùng thuộc mp(SAD) và (SBC).

Vậy SK là giao tuyến của (SAD) và (DBC).

b) (SAB) và (SCD) có AB // CD và S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB và CD.

c) Gọi O là giao điểm của AC và BD suy ra O thuộc giao tuyến của (SAC) và (SBC)

Suy ra SO là giao tuyến của (SAC) và (SBD).

24 tháng 3 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ O ∈ (SAC) ∩ (SBD)

⇒ (SAC) ∩ (SBD) = SO

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.

31 tháng 10 2018

Phương pháp:

- Sử dụng phương pháp tọa độ trong không gian, gắn hệ trục tọa độ gốc A và các trục tọa độ sao cho 

 - Sử dụng các công thức điểm, véc tơ, mặt phẳng, góc giữa hai mặt phẳng để tính toán.

Cách giải:

Gắn hệ trục tọa độ như hình vẽ, giả sử ABCD là hình vuông cạnh l,

chiều cao hình chóp SH = h.

21 tháng 8 2019

B

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: Gọi K là giao của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: \(\left(SAD\right)\cap\left(SBC\right)=xy\), xy đi qua S và xy//AD//BC

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

c; AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

4 tháng 11 2017

a, Giao tuyến (SAC) và (SBD) là SO


A S B C D O

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC