Rút gọn phân thức x 2 − xy − x + y x 2 + xy − x − y ta được phân thức có mẫu là?
A. x - y
B. x − y x + y
C. x + y
D. (x - 1)(x + y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-5x+6}{x^2-2x}=\frac{x^2-2x-3x+6}{x.\left(x-2\right)}=\frac{x.\left(x-2\right)-3.\left(x-2\right)}{x.\left(x-2\right)}\)
\(=\frac{\left(x-3\right).\left(x-2\right)}{x.\left(x-2\right)}=\frac{x-3}{x}\)
a) \(\dfrac{2x^2-2xy}{x^2+x-xy-y}\) \(\left(x\ne y;x\ne-1\right)\)
\(=\dfrac{2x\left(x-y\right)}{x\left(x+1\right)-y\left(x+1\right)}\)
\(=\dfrac{2x\left(x-y\right)}{\left(x-y\right)\left(x+1\right)}\)
\(=\dfrac{2x}{x+1}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\dfrac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x-y+z\right)\left(x+y+z\right)}\)
\(=\dfrac{x+y-z}{x-y+z}\)
\(\frac{x^2-y^2}{x^2-y^2+xy-yz}=\frac{1}{xy-yz}=\frac{1}{y\left(x-z\right)}\)
Với đk trên ta có:
P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)
\(=\frac{2}{x}+\frac{x-y}{xy}\)
\(=\frac{x+y}{xy}\)
b: \(=\dfrac{\left(x+3\right)^2-y^2}{2\left(x-y+3\right)}\)
\(=\dfrac{\left(x+3+y\right)\left(x+3-y\right)}{2\left(x-y+3\right)}=\dfrac{x+y+3}{2}\)