Cho tam giác ABC, AB < AC. Qua trung điểm D của cạnh BC vẽ đường thằng vuông góc với tia phân giác của góc A, cắt AB và AV theo thứ tự M và N.
a) Chứng minh BM = CN.
b) Tính BM, AM theo AC = b, AB = c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác ADM = tam giác ADN (cạnh góc vuông _ góc nhọn)
(AD chung ; ADM^ = ADN^ = 90o; BAD^ = NAD^)
=> DM=DN (2 cạnh t/ứng)
Tam giác BDM = tam giác CDN (c.g.c)
(DB = DC ; BDM^ = CDN^ (đđ); DM = DN)
=> BM = CN (2 cạnh t/ứng)
b) AM = c+ BM
AN = b- NC
(hình như câu b là vậy ^^!)
Hình bn tự vẽ nha!!^^
a, Xét \(\Delta ADM\)VÀ \(\Delta ADN\)có:'
\(\widehat{MAD}=\widehat{DAN}\)(tia p/g \(\widehat{BAN}\))
\(AD\)chung
\(\widehat{ADN}=\widehat{ADM}\)(Đg thg \(\perp\))(=90 độ)
\(\Rightarrow\Delta'ADM=\Delta ADN\left(g.c.g\right)\)
\(\Rightarrow\widehat{M}=\widehat{N}\)(2 góc t/ứ)
Xét tam giác AMN có: \(\widehat{M}=\widehat{N}\Rightarrow\Delta AMN\)là tam giác cân tại A
a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>MA=MN
c: Xét ΔBDC có
BE là đừog cao, là phân giác
nên ΔBDC cân tại B
=>BD=BC
BA+AD=BD
BN+NC=BC
mà BD=BC; BA=BN
nên AD=NC