Cho tập hợp các số nguyên liên tiếp như sau: 1 , 2 ; 3 , 4 ; 5 ; 6 , 7 ; 8 ; 9 ; 10 ,... , trong đó mỗi tập hợp chứa nhiều hơn tập hơp ngay trước đó 1 phần tử, và phần tử đầu tiên của mỗi tập hợp lớn hơn phần tử cuối cùng của tập hợp ngay trước nó 1 đơn vị. Gọi S n là tổng của các phần tử trong tập hợp thứ n. Tính S 999
A. 498501999
B. 498501998
C. 498501997
D. 498501995
Đáp án A
Ta thấy tập hợp thứ n số nguyên liên tiếp, và phần tử cuối cùng của tập hợp này là 1 + 2 + 3 + ... + n = n n + 1 2 .
Khi đó S n là tổng của n số hạng trong một cấp số cộng có số hạng đầu là u 1 = n n + 1 2 , công sai d = − 1 (coi số hạng cuối cùng trong tập hợp thứ n là số hạng đầu tiên của cấp số cộng này), ta có:
S n = n 2 u 1 + n − 1 d 2 = n 2 n n + 1 − n − 1 = 1 2 n n 2 + 1 .
Vậy
S 999 = 1 2 .999. 999 2 + 1 = 498501999.