Số hạng thứ hai, số hạng đầu và số hạng thứ ba của một cấp số cộng với công sai khác 0 theo thứ tự đó lập thành một cấp số nhân với công bội q. Tìm q ?
A. q= 2
B. q = -2
C. q = − 3 2 .
D. q = 3 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Theo giả thiết ta có :
y = x q ; z = x q 2 x + 3 z = 2 2 y ⇒ x + 3 x q 2 = 4 x q ⇒ x 3 q 2 − 4 q + 1 = 0 ⇔ x = 0 3 q 2 − 4 q + 1 = 0 .
Nếu x = 0 ⇒ y = z = 0 ⇒ công sai của cấp số cộng: x ; 2y ; 3z bằng 0 (vô lí).
nếu
3 q 2 − 4 q + 1 = 0 ⇔ q = 1 q = 1 3 ⇔ q = 1 3 q = 1 .
Chọn B
Do 3 số a, b, c theo thứ tự lập thành cấp số nhân nên ta có :
a c = b 2 ⇒ 1 b 2 = 1 a c
Theo giả thiết ta có :
\(u_1+u_2=u_1+\frac{1}{4}\left(u_1\right)=24\)
\(\Rightarrow u_1+\frac{1}{4}u_1^2-24=0\)
\(\Leftrightarrow u_1=-12\) V \(u_1=8\)
Vậy có 2 cấp số nhân tương ứng là : 8,16,32,128 hoặc -12,36,-108,-972
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_2}.q = {u_1}.{q^2}\)
\({u_4} = {u_3}.q = {u_1}.{q^3}\)
\({u_5} = {u_4}.q = {u_1}.{q^4}\)
b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).
Chọn B
Giả sử ba số hạng a, b, c lập thành cấp số cộng thỏa yêu cầu, khi đó b, a, c theo thứ tự đó lập thành cấp số nhân công bội q. Ta có
a + c = 2 b a = b q ; c = b q 2 ⇒ b q + b q 2 = 2 b ⇔ b = 0 q 2 + q − 2 = 0 .
Nếu b = 0 ⇒ a = b = c = 0 nên a, b, c là cấp số cộng công sai d= 0 (vô lí).
Nếu q 2 + q − 2 = 0 ⇔ q = 1 hoặc q= -2. Nếu q = 1 ⇒ a = b = c (vô lí), do đó q = -2.