Kết luận nào sau đây là đúng nhất khi nói về nghiệm x 0 của phương trình
x + 1 2 + x + 3 4 = 3 - x + 2 3
A. x 0 là số vô tỉ
B. x 0 là số âm
C. x 0 là hợp số
D. x 0 không là số nguyên tố cũng không là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x + 3)(x + 4) > (x - 2)(x + 9) + 25
Û x2 + 7x + 12 > x2 + 7x - 18 + 25
Û x2 + 7x + 12 - x2 - 7x + 18 - 25 > 0
Û 5 > 0
Vì 5 > 0 (luôn đúng) nên bất phương trình vô số nghiệm x Î R.
Đáp án cần chọn là: B
Từ phương trình (1): x – my = m ⇔ x = m + my thế vào phương trình (2) ta được phương trình:
m (m + my) + y = 1
⇔ m 2 + m 2 y + y = 1 ⇔ ( m 2 + 1 ) y = 1 – m 2 ⇔ y = 1 − m 2 1 + m 2
(vì 1 + m 2 > 0 ; ∀ m ) suy ra x = m + m . 1 − m 2 1 + m 2 = 2 m 1 + m 2 với mọi m
Vậy hệ phương trình luôn có nghiệm duy nhất ( x ; y ) = 2 m 1 + m 2 ; 1 − m 2 1 + m 2
⇒ x – y = 2 m 1 + m 2 − 1 − m 2 1 + m 2 = m 2 + 2 m − 1 1 + m 2
Đáp án: B
Từ (m – 1) x + y = 2 thế vào phương trình còn lại ta được phương trình:
mx + 2 – (m – 1) x = m + 1 ⇔ x = m – 1 suy ra y = 2 – ( m – 1 ) 2 với mọi m
Vậy hệ phương trình luôn có nghiệm duy nhất ( x ; y ) = ( m – 1 ; 2 – ( m – 1 ) 2 )
2 x + y = 2 ( m – 1 ) + 2 – ( m – 1 ) 2 = − m 2 + 4 m – 1 = 3 – ( m – 2 ) 2 ≤ 3 với mọi m
Đáp án: A
Ta có
x + y 5 = x − y 3 x 4 = y 2 + 1 ⇔ 3 x + 3 y = 5 x − 5 y x = 2 y + 4 ⇔ 2 x = 8 y x = 2 y + 4 ⇔ x = 4 y x = 2 y + 4 ⇔ x = 4 y 2 y − 4 = 0 ⇔ y = 2 x = 8
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (8; 2)
Đáp án: D
Ta có
x + y 2 = 2 x − 3 2 x 2 + 3 y = 25 − 9 y 8 ⇔ 2 x + y = 2 x − 3 4 x + 24 y = 25 − 9 y ⇔ y = − 3 4 x + 33 y = 25 ⇔ x = 31 y = − 3
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (31; −3)
x > 0; y < 0
Đáp án: A
Ta có : -3 – 2( -1)- 1 < 0 nên điểm M thuộc miền nghiệm của bất phương trình (1).
Lại có : 2.(-3) –(-1) + 3 < 0 nên điểm M không thuộc miền nghiệm của bất phương trình thứ (2).