K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

Đáp án A.

27 tháng 4 2017

Đáp án A.

Tam giác OPM vuông tại P suy ra O P = R . cos α ; M P = R . sin α .

Thể tích khối nón được tính bằng công thức

V = 1 3 . O P . πMP 2 = 1 3 . R . cosα . π . R 2 . sin 2 α = πR 3 3 . cosα . sin 2 α = πR 3 3 . cosα 1 - cos 2 α

V đạt giá trị lớn nhất khi - cos 3 α + cos α  đạt giá trị lớn nhất.

Sử dụng TABLE ta có

Ta thấy hàm số đạt giá trị lớn nhất là 0 , 384 = 2 3 9 . Suy ra V = 2 3 πR 3 27 .

21 tháng 7 2018

Ta có: OP = OM.cosα = R. cosα

Phương trình đường thẳng OM đi qua O nên có dạng: y = k.x

OM tạo với trục hoành Ox 1 góc

⇒ Hệ số góc k = tanα

⇒ OM: y = x.tanα

Vậy khối tròn xoay được tạo bởi hình phẳng giới hạn bởi đường thẳng y = x.tanα; y = 0; x = 0; x = R.cosα quay quanh trục Ox

19 tháng 12 2017

* Ta tìm giá trị lớn nhất của P = cosα – cos3α

Giải bài 5 trang 121 sgk Giải tích 12 | Để học tốt Toán 12

1 tháng 4 2017

a) Hoành độ điểm P là :

xp = OP = OM. cos α = R.cosα

Phương trình đường thẳng OM là y = tanα.x. Thể tích V của khối tròn xoay là:

b) Đặt t = cosα => t ∈ . (vì α ∈ ), α = arccos t.

Ta có :

V' = 0 ⇔

hoặc (loại).

Từ đó suy ra V(t) lớn nhất ⇔ , khi đó : .

30 tháng 7 2018

Đáp án B.

Đặt a = B C , b = C A , c = A B .

Quay tam giác OCA quanh trung trực của đoạn thẳng CA thì khối tròn xoay sinh ra là khối nón có chiều cao h 1 = R 2 − 1 4 b 2  và bán kính đáy r 1 = 1 2 b  nên ta có V 1 = 1 3 π r 1 2 h 1 = 1 24 π b 2 4 R 2 − b 2 .

Tương tự, ta có

V 2 = 1 24 π c 2 4 R 2 − c 2 ; V 3 = 1 24 π a 2 4 R 2 − a 2 .

Bằng việc khảo sát hàm số f t = t 2 4 R 2 − t  trên khoảng 0 ; 4 R 2 hoặc dựa vào bất đẳng thức Cô-si

1 2 b 2 . 1 2 b 2 . 4 R 2 − b 2 ≤ 1 2 b 2 + 1 2 b 2 + 4 R 2 − b 2 3 3 = 64 27 R 6 .

 

Ta được V 1 ≤ 2 π 3 9 R 3 ; V 2 ≤ 2 π 3 9 R 3 . Suy ra V 1 + V 2 ≤ 4 π 3 9 R 3 .

Dấu bằng xảy ra khi và chỉ khi b = c = 2 6 3 R .

Vậy V 1 + V 2  đạt giá trị lớn nhất bằng 4 π 3 9 R 3  khi b = c = 2 6 3 R .

Khi đó tam giác ABC cân tại A và có A B = A C = 2 6 3 R .

Gọi AH là đường cao của tam giác ABC thì 2 R . A H = A B 2 . Từ đó suy ra A H = A B 2 2 R = 4 3 R . Do đó O H = A H − R = 1 3 R  và a = 2 R 2 − O H 2 = 4 2 3 R .

Suy ra V 3 = 8 π 81 R 3 .

9 tháng 8 2018

Đáp án B.

3 tháng 5 2017

18 tháng 7 2017

Đáp án B.

Khi quay hình vẽ quanh trục SO sẽ tạo nên khối trụ nội tiếp hình nón.

Suy ra thiết diện qua trục của hình trụ là hình chữ nhật MNPQ.

Theo định lí Talet, ta có 

Thể tích khối trụ là 

Theo AM – GM ta được

Vậy Dấu “=” xảy ra khi 

16 tháng 7 2018

Khối trụ thu được có bán kính đáy bằng ON và chiều cao bằng MN.

Chọn A