phân tích đa thức thành nhân tử
4a3-22a+44a-24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^2-b^2-5a+5b\)
\(=\left(a-b\right)\left(a+b\right)-5\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-5\right)\)
b) Ta có: \(a^2-b^2-3ab^2-3a^2b\)
\(=\left(a-b\right)\left(a+b\right)-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b-3ab\right)\)
a) Ta có: \(x^2-2xy+y^2-2x+2y\)
\(=\left(x-y\right)^2-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2-4x+4-x^2y+2xy\)
\(=\left(x-2\right)^2-xy\left(x-2\right)\)
\(=\left(x-2\right)\left(x-2-xy\right)\)
\(=x^3-3x^2+6x^2-18x+8x-24\\ =\left(x-3\right)\left(x^2+6x+8\right)\\ =\left(x-3\right)\left(x^2+2x+4x+8\right)\\ =\left(x-3\right)\left(x+2\right)\left(x+4\right)\)
\(x^3+3x^2-10x-24=\left(x^3-3x^2\right)+\left(6x^2-18x\right)+\left(8x-24\right)=x^2\left(x-3\right)+6x\left(x-3\right)+8\left(x-3\right)=\left(x-3\right)\left(x^2+6x+8\right)=\left(x-3\right)\left[\left(x^2+2x\right)+\left(4x+8\right)\right]=\left(x-3\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=\left(x-3\right)\left(x+2\right)\left(x+4\right)\)
\(x^3+4x^2-29x+24\)
\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)
\(=\left(x+8\right)\left(x^2-4x+3\right)\)
\(=\left(x+8\right)\left[x\left(x-1\right)-3\left(x-1\right)\right]\)
\(=\left(x+8\right)\left(x-1\right)\left(x-3\right)\)
*Đoán nghiệm sử dụng tính chất của đa thức:
Ta dễ dàng nhận thấy đa thức \(P\left(x\right)=x^3+4x^2-19x+24\) không có nghiệm là \(\pm1\).
Giả sử \(P\left(x\right)\) có nghiệm hữu tỉ dạng \(\dfrac{p}{q}\left(p,q\inℤ\right)\), không mất tổng quát giả sử \(q>0\). Khi đó \(p|24\), \(q|1\) \(\Rightarrow q=1\).
Khi đó do \(P\left(x\right)\) không có nghiệm là \(\pm1\) nên \(p\in\left\{\pm2,\pm3,\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)
Thử lại, ta thấy không có số \(p\) nào thỏa mãn \(\dfrac{p}{q}\) là nghiệm của P(x). Vậy đa thức \(P\left(x\right)\) không có nghiệm hữu tỉ \(\Rightarrow\) \(P\left(x\right)\) không thể phân tích thành nhân tử.
* Chú ý rằng chỉ khi \(degP\left(x\right)\le3\) hoặc \(degP\left(x\right)⋮̸2\) thì từ P(x) không có nghiệm hữu tỉ mới suy ra được P(x) không phân tích được thành nhân tử nhé. Nếu \(\left\{{}\begin{matrix}degP\left(x\right)\ge4\\degP\left(x\right)⋮2\end{matrix}\right.\) thì chưa chắc điều này đã đúng. VD: Đa thức \(Q\left(x\right)=x^4+4\) không có nghiệm hữu tỉ (nó thậm chí còn không có nghiệm thực) nhưng ta vẫn có thể phân tích thành nhân tử như sau:
\(Q\left(x\right)=x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(=4a^3+22a-24=2\left(2a^3+11a-12\right)\)