K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Chọn: A

20 tháng 10 2019

9 tháng 6 2018

Bài 6 . Áp dụng BĐT Cauchy , ta có :

a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

⇔ ( a + b)2 ≥ 4ab

\(\dfrac{\left(a+b\right)^2}{4}\)≥ ab

\(\dfrac{a+b}{4}\)\(\dfrac{ab}{a+b}\) ( 1 )

CMTT , ta cũng được : \(\dfrac{b+c}{4}\)\(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\)\(\dfrac{ac}{a+c}\)( 3)

Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :

\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

\(\dfrac{a+b+c}{2}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

9 tháng 6 2018

Bài 4.

Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :

\(1+\dfrac{a}{b}\)\(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)

\(1+\dfrac{b}{c}\)\(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)

\(1+\dfrac{c}{a}\)\(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)

Nhân từng vế của ( 1 ; 2 ; 3) , ta được :

\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)\(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)

\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)

=>B

30 tháng 12 2019

a) Vì x;y;z > 0 nên áp dụng bất đẳng thức Bunhiakovsky : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) , ta được :

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}\)

\(\Leftrightarrow\)\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Vậy \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\left(ĐPCM\right)\)

b) Ta chứng minh bất đẳng thức phụ :\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3ac-3bc\ge0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ab-ac\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+ab+ac\right)\)

Vì a,b,c > 0 nên áp dụng bất đẳng thức Bunhiakovsky : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) , ta được :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)

\(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(ĐPCM\right)\)

Xét \(\left(a^2+\frac{1}{b+c}\right)\left(4^2+1^2\right)\ge\left(4a+\frac{1}{\sqrt{b+c}}\right)^2\)

=> \(\sqrt{a^2+\frac{1}{b+c}}\ge\frac{4a+\frac{1}{\sqrt{b+c}}}{\sqrt{17}}\)

Tương tự => \(\left\{{}\begin{matrix}\sqrt{b^2+\frac{1}{c+a}}\ge\frac{4b+\frac{1}{\sqrt{c+a}}}{\sqrt{17}}\\\sqrt{c^2+\frac{1}{a+b}}\ge\frac{4c+\frac{1}{\sqrt{a+b}}}{\sqrt{17}}\end{matrix}\right.\)

=> A \(\ge\frac{4\left(a+b+c\right)+\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}}{\sqrt{17}}\)

\(\frac{1}{\sqrt{a+b}}=\frac{4}{4.\sqrt{a+b}}\)

\(\sqrt{\left(a+b\right).4}\le\frac{a+b+4}{2}\) => \(4\sqrt{a+b}\le a+b+4\)

=> \(\frac{1}{\sqrt{a+b}}\ge\frac{4}{a+b+4}\)

Tương tự => \(\left\{{}\begin{matrix}\frac{1}{\sqrt{b+c}}\ge\frac{4}{b+c+4}\\\frac{1}{\sqrt{c+a}}\ge\frac{4}{c+a+4}\end{matrix}\right.\)

=> \(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\) \(\ge4.\left(\frac{1}{b+c+4}+\frac{1}{c+a+4}+\frac{1}{a+b+4}\right)\)

\(\ge4.\frac{9}{2a+2b+2c+12}=\frac{3}{2}\)

=> \(A\ge\frac{4.6+\frac{3}{2}}{\sqrt{17}}=\frac{3.\sqrt{17}}{2}\)

15 tháng 11 2016

cm cái jz ?????

 

18 tháng 4 2017

Đáp án A

Mệnh đề 

Mệnh đề (III): 

21 tháng 12 2016

câu 0,5 điểm trong đề thi toán đấy. mk làm rùi nhưng ko chắc chắn lắm. các bạn làm giúp để mk so sánh bài làm nha! cảm ơn nhiều!

21 tháng 12 2016

bạn làm ntn