Tìm x biết
4(2x+7) - 3(3x - 2)=24
-2(x+3)+(-4)^2=3(1-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x-1\right)+3\left(3x-2\right)=x-4\)
\(2x-2+9x-6=x-4\)
\(2x+9x-x-2-6=-4\)
\(10x-2-6=-4\)
\(10x-2=2\)
\(10x=4\)
\(x=\frac{2}{5}\)
Vậy \(x=\frac{2}{5}\)
\(3\left(4-x\right)-2\left(x-1\right)=x+20\)
\(12-3x-2x+2=x+20\)
\(12-5x+2=x+20\)
\(12-5x-x+2=20\)
\(12-6x+2=20\)
\(12-6x=18\)
\(6x=-6\)
\(x=-1\)
Vậy \(x=-1.\)
\(4\left(2x+7\right)-3\left(3x-2\right)=24\)
\(8x+28-9x+6=24\)
\(8x-9x+28+6=24\)
\(-x+34=24\)
\(-x=-10\)
\(x=10\)
Vậy \(x=10\)
\(3\left(x-2\right)+2x=10\)
\(3x-6+2x=10\)
\(3x+2x-6=10\)
\(5x=16\)
\(x=\frac{16}{5}\)
Vậy \(x=\frac{16}{5}\)
2(x-1)+3(3x-2)=x-4
=>2x-2=9x-6-x+4=0
=>10x-4=0
=>x=\(\frac{2}{5}\)
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
a,6x-3-5x+15+18x-24=24
19x-12=24
19x=36
x=36/19
c,10x-6x2+6x2-10x+21=3
0x=-18
không có x
d,3x2+3x-2x2-4x=-1-x
x2-x=-1-x
x2-x+x=-1
x2=-1
không có x thỏa mãn
a:x=3/5-7/8=24/40-35/40=-11/40
b: =>1/3:(2x-1)=-1/6
=>2x-1=-2
=>2x=-1
=>x=-1/2
c: =>x-3/4=17/2+7/4=34/4+7/4=41/4
=>x=11
d: =>3x+2=0 hoặc 2/5x+7=0
=>x=-2/3 hoặc x=-7:2/5=-35/2
1) \(-6x^4+4x^3-2x^2\)
2) \(=x^2+4x-21-x^2-4x+5=-16\)
3) \(=6x^2-4x-x^2-4x-4=5x^2-8x-4\)
4) \(=2x^3-4x^2-8x-3x^2+6x+12=2x^3-7x^2-2x+12\)
không ai trả lời
a,\(2\left(3x-1\right)-5\left(x-3\right)-9\left(2x-4\right)=24\)
\(< =>6x-2-5x+15-18x+36=24\)
\(< =>-29x+49=24< =>29x=25< =>x=\frac{25}{29}\)
b,\(2x^2+4\left(x^2-1\right)=2x\left(3x+1\right)\)
\(< =>2x^2+4x^2-4=6x^2+2x\)
\(< =>2x=-4< =>x=-\frac{4}{2}=-2\)
c, \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=4\)
\(< =>10x-6x^2+6x^2-10x-3x+21=4\)
\(< =>-3x=4-21=-17< =>x=\frac{17}{3}\)
d, \(5x\left(x+1\right)-4x\left(x+2\right)=1-x\)
\(< =>5x^2+5x-4x^2-8x=1-x\)
\(< =>x^2-3x+x-1=0\)
\(< =>x^2-2x-1=0\)
\(< =>\left(x-1\right)^2=2\)
\(< =>\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
a. 4(2x+7)-3(3x-2)=24
=> 8x+28-9x+6=24
=> -x+34=24
=> -x=-10=> x=10
b. 2(x-1)+3(x-2)=x-4
=> 2x-2+3x-6=x-4
=> 5x-8=x-4
=> 5x-x=-4+8
=> 4x=4=> x=1
c. [124-(20-4x)]:30+7=11
=> (124-20+4x):30=4
=> (104+4x):30=4
=> 104+4x=120
=> 4x=96 => x=24
1) 3x = 45 + 15 = 60
x = 60 : 3 = 20
2) 5x = 50 - 35 = 15
x = 15 : 5 = 3
3) (2x - 5) + 17 = 6
2x - 5 = 6 - 17
2x - 5 = -11
2x = -11 + 5
2x = -6
x = -6 : 2 = -3
4) 10 - 2(4 -3x) = -4
2(4 - 3x) = -4 - 10 = -14
4 - 3x = -14 : 2 = -7
3x = -7 - 4 = -18
x = -18 : 3 = -6
a) 4(2x+7)-3(3x-2)=24
8x+28-9x-6=24
(8x-9x)+(28-6)=24
(-1)x+22=24
(-1)x=24-22=2
x=2:(-1)=-2
b) -2(x+3)+(-4)2=3(1-x)
(-2)x+(-6)+16=3-3x
(-2)x+(-6)+16+3x=3
[(-2)x+3x]+[(-6)+16]=3
x+10=3
x=3-10=-7