Cho cấp số cộng ( u n ) thỏa mãn u 2 - u 3 + u 5 = 10 u 4 + u 6 = 26 . Tính S = u 1 + u 4 + u 7 + . . . + u 2017
A. S = 2023736
B. S = 2035825
C. S = 673044
D. S = 3034
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Gọi 3 số là a;b;c
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=6\\2b=a+c\\a^2+b^2+c^2=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a+c=4\\a^2+c^2=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}b=2\\c=4-a\\a^2+\left(4-a\right)^2=26\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\c=5\\a=-1\end{matrix}\right.\left(\text{V\text{ì} }a< c\right)\)
Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)
\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)
Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt
\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)
(2) có 2 nghiệm \(t_1< t_2\)
=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)
Tổng 16 số hạng đầu tiên:
\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)
1 ) ( x^2 + 1 )( x^2 + 5 ) = 0
=> x^2 + 1 = 0 hoặc x^2 + 5 = 0
=> x^2 = -1 hoặc x^2 = -5 ( loại vì x^2 >= 0 )
2) =>20x^2 - 4x + 20x - 20x^2 = 16
=> 16x = 16
=> x = 1
3) ( 100 -a )( 100- b ) = 10000 - 100b - 100a - ab
= 100 ( 100 -a - b ) - ab
=> x = -1
sai
đọc kĩ đề bài 1 đi
số giá trị của x!
vậy9 kết quả phải là 0 vì x ko có kết quả nào thõa mản dk trên
1 ) \(\left(x^2+1\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+1=0\\x^2+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=-1\\x^2=-5\end{array}\right.\) loại ( vì \(x^2\ge0\) )
Vậy không có giá trị nào thõa mãn .
2 ) \(4x\left(5x-1\right)+10x.\left(2-2x\right)=16\)
\(\Leftrightarrow20x^2-4x+20x-20x^2=16\)
\(\Leftrightarrow16x=16\)
\(\Leftrightarrow x=1\)
3 ) \(\left(100-a\right)\left(100-b\right)\)
\(=10000-100b-100a-ab\)
\(=100\left(100-a-b\right)-ab\)
\(\Rightarrow x=-1\)
Tìm n thỏa mãn :
2 . 24 < 2n < 256
n = 4
n = 5
n = 6
n = 7
n = 8
ta có :\(2.2^4\)<\(2^n\)<256
(=)\(2^6\)<\(2^n\)<\(2^8\)
=>n\(\in\){6,7,8}
Hình như đây là đề thi vào 10 chuyên năng khiếu thành phố hồ chí minh năm 2013-2014 thì phải
Chọn đáp án A