Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC)
A. 300
B. 450
C. 600
D. 900
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Vì hai tam giác ABC và SBC đều và có chung cạnh BC nên bằng nhau ⇒ A H = S H .
Mà Δ H S A vuông tại H nên vuông cân
⇒ S A H ^ = 45 °
Đáp án là D
Gọi H là trung điểm B C . Ta có A H là hình chiếu vuông góc của S A lên mặt phẳng A B C .
Khi đó S A ; A B C ^ = S A ; A H ^ = S A H ^
Ta có S H = A H S H ⊥ A H ⇒ Δ S A H vuông cân tại - H ⇒ S A H ^ = 45 0 .
Đáp án D
Góc giữa cạnh SA và đáy là S A F ^ ,
Vì tam giác ABC và SBC là tam giác đều cạnh a nên ta có
Vậy
\(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)
\(SH=\dfrac{a\sqrt{3}}{2}\) (đường trung tuyến trong tam giác đều SBC cạnh a)
\(AH=\dfrac{a\sqrt{3}}{2}\) (đường trung tuyến trong tam giác đều ABC cạnh a)
\(tan\widehat{SAH}=\dfrac{SH}{AH}=1\Rightarrow\widehat{SAH}=45^0\)
Đáp án D
Ta có H là trung điểm của BC, H là hình chiếu của S trên mặt phẳng (ABC) nên HA là hình chiếu của SA trên mặt phẳng (ABC).
Suy ra S A , A B C ^ = S A , H A ^ = S A H ^ .
Lại có Δ A B C = Δ S B C (đều là các tam giác đều cạnh a) nên A H = S H ⇒ Δ S H A vuông cân tại H.
Vậy S A , A B C ^ = S A H ^ = 45 ° .
Đáp án D
Góc giữa cạnh SA và đáy là SAF ,
Vì tam giác ABC và SBC là tam giác đều cạnh a nên ta có
A F = 3 2 a ; S F = 3 2 a
Vậy tan S A F ^ = 1 ⇒ S A G ^ = 45 0