K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Đáp án A

Phương pháp :

+) Chọn vị trí cho các bạn nam (hoặc nữ).

+) Hoán đổi các vị trí.

+) Sử dụng quy tắc nhân.

Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có C 2 1 cách chọn, như vậy có ( C 2 1 ) 4   =   2 4 cách chọn ghế cho 4 bạn nam.

4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp

Vậy có 4!4!24 cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ.

17 tháng 10 2019

Đáp án A

Phương pháp :

+) Chọn vị trí cho các bạn nam (hoặc nữ).

+) Hoán đổi các vị trí.

+) Sử dụng quy tắc nhân.

Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có  C 2 1 cách chọn, như vậy có  ( C 2 1 ) 4 = 2 4  cách chọn ghế cho 4 bạn nam.

4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp

Vậy có  cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ

13 tháng 11 2017

Chọn B

Số phần tử của không gian mẫu là số cách sắp xếp 8 học sinh vào 8 chỗ ngồi khác nhau. Suy ra  n ( Ω ) = 8!

Gọi A là biến cố xếp 8 học sinh sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau. Ta đánh số các chỗ ngồi từ 1 đến 8 như sau:

Dãy 1:

1

2

3

4

Dãy 2:

8

7

6

5

Để sắp xếp các học sinh ngồi vào vị trí thỏa mãn yêu cầu bài toán ta sắp xếp như sau:

Trường hợp 1: 4 học sinh nam ngồi vào các số lẻ, 4 học sinh nữ ngồi vào các số chẵn. Trường hợp này có 4!4! cách.

Trường hợp 2: 4 học sinh nam ngồi vào các số chẵn, 4 học sinh nữ ngồi vào các số lẻ. Trường hợp này có 414! cách.

Do đó n(A) = 2.4!.4!

Vậy xác suất của biến cố A là 

7 tháng 1 2017

Chọn đáp án A.

8 tháng 4 2019

Chọn A.

Số phần tử của không gian mẫu là n(W =) 6!.

Gọi  A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ  hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

Theo quy tắc nhân ta có  cách

17 tháng 10 2018

Đáp án là A

22 tháng 12 2017

Đáp án A

16 tháng 11 2018

20 tháng 6 2019

Chọn D

Cách 1. Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế có  cách.

Đánh số ghế lần lượt từ 1 đến 10.

 

Xếp học sinh thỏa mãn bài toán xảy ra hai khả năng sau:

Khả năng 1: Nam ngồi vị trí lẻ, nữ ngồi vị trí chẵn có 5!.5! cách.

Khả năng 2: Nam ngồi vị trí chẵn, nữ ngồi vị trí lẻ có 5!.5! cách.

Vậy có tất cả 2. ( 5 ! ) 2  cách.

Xác suất cần tìm bằng 

Cách 2: Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế, có 10! cách xếp.

Ta chia hai dãy ghế thành 5 cặp ghế đối diện:

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có   cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 3 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 4 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 5 có 1 cách.

Vậy có tất cả  cách xếp thỏa mãn.

Xác suất cần tìm bằng  

26 tháng 2 2018

Xếp ngẫu nhiên 10 học sinh có 10! cách. Ta tìm số cách xếp thoả mãn

Đánh số ghế lần lượt từ 1 đến 10.

1

2

3

4

5

6

7

8

9

10

Nam xếp ghế lẻ, nữ xếp ghế chẵn có 5!5! cách

Nam xếp ghế chẵn, nữ xếp ghế lẻ có 5!5! cách

Vậy có tất cả 5!5!+5!5!cách xếp. Xác suất cần tính bằng  5 ! 5 ! + 5 ! 5 ! 10 ! = 1 126

Chọn đáp án D.

Cách 2: Chia thành 5 cặp ghế đối diện:

Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có C 5 1 C 5 1 2 ! cách

Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 4 1 C 4 1  cách;

Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 3 1 C 3 1  cách;

Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 2 1 C 2 1  cách;

Cặp nam và nữ còn lại xếp vào cặp ghế 5 có 1 cách.

Vậy có tất cả  ( C 5 1 C 4 1 C 3 1 C 2 1 ) 2 2 ! = 2 5 ! 2 cách xếp thoả mãn.

Xác suất cần tính bằng  2 5 ! 2 10 ! = 1 216

Chọn đáp án D.