K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

19 tháng 11 2018

Đáp án B

- Phương pháp: Sử dụng công thức ba điểm và công thức hình bình hành

- Cách giải:

+ Do A B C D . A 1 B 1 C 1 D 1  là hình lập phương nên A C C 1 A 1  là hình chữ nhật.

   ⇒ O là trung điểm của AC1 

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

+ Ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

18 tháng 8 2017

Đáp án C

Ta có  A O → = 1 2 A A 1 → + A C → = 1 2 A A 1 → A B → + A D →

22 tháng 2 2017

ĐÁP ÁN: D

2 tháng 10 2019

Gọi M, N lần lượt là trung điểm các cạnh A′B′,C′D′  ta có ((OA′B′), (OC′D′)) = (OM,ON).

Ta có 

MN=a, 

= 3 5

Chọn đáp án D.

20 tháng 9 2018

a) Bốn tam giác OAA', OBB', OCC', ODD' là các tam giác vuông bằng nhau nên suy ra OA' = OB' = OC' = OD'.

Hình chóp O.A'B'C'D' là hình chóp đều vì có các mặt bên là tam giác cân và đáy là đa giác đều.

b) Thể tích của của hình chóp O.A'B'C'D' là:

 

Thể tích hình lập phương:

 

Vậy  V ' V   =   1 3

7 tháng 8 2018

14 tháng 9 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác AA’C vuông tại A có

\(A'{C^2} = A{A'^2} + A{C^2} = {a^2} + {\left( {a\sqrt 2 } \right)^2} = 3{a^2} \Rightarrow A'C = a\sqrt 3 \)

Vậy độ dài đường chéo hình lập phương bằng \(a\sqrt 3 \)

b) Ta có \(\begin{array}{l}BD \bot AC,BD \bot AA' \Rightarrow BD \bot \left( {ACC'A'} \right);BD \subset \left( {BDD'B'} \right)\\ \Rightarrow \left( {ACC'A'} \right) \bot \left( {BDD'B'} \right)\end{array}\)

c) Ta có \(C'O \bot BD\left( {BD \bot \left( {ACC'A'} \right)} \right),CO \bot BD \Rightarrow \left[ {C,BD,C'} \right] = \left( {CO,C'O} \right) = \widehat {COC'}\)

\(OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác COC’ vuông tại C có

\(\tan \widehat {COC'} = \frac{{CC'}}{{OC}} = \frac{a}{{\frac{{a\sqrt 2 }}{2}}} = \sqrt 2  \Rightarrow \widehat {COC'} = \arctan \sqrt 2 \)

Ta có \(C'O \bot BD\left( {BD \bot \left( {ACC'A'} \right)} \right),AO \bot BD \Rightarrow \left[ {A,BD,C'} \right] = \left( {AO,C'O} \right) = \widehat {AOC'}\)

\(\widehat {AOC'} = {180^0} - \widehat {COC'} \approx 125,{26^0}\)