Số số hạng của dãy số \(\frac{1}{2};\frac{1}{4};\frac{1}{6};.....;\frac{1}{2014}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).
Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).
Chọn đáp án D.
a, Ta có: \(\dfrac{4}{2}=2;\dfrac{8}{4}=2;\dfrac{16}{8}=2;\dfrac{32}{16}=2;\dfrac{64}{32}=2\)
b, Ta thấy:
i, Số sai bằng số liền trước nhân với 2.
ii, Số sau bằng số liền trước nhân với \(\dfrac{1}{2}\)
iii, Số sau bằng số liền trước nhân với -3.
Điểm giống nhau của các dãy số này là số sau bằng số liền trước nhân với một số không đổi.
Ta có:
\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)
\(\Rightarrow B\)
Số số hạng của dãy là: (2014-2):2+1=1007 (số )
(2014 - 2) : 2 + 1 = 1007 số hạng