Trong không gian, cho tam giác ABC cân tại A, A B = a 10 , B C = 2 a Gọi H là trung điểm của BC. Tính thể tích V của hình nón nhận được khi quay tam giác ABC xung quanh trục AH.
A. V = 2 πa 3
B. V = 3 πa 3
C. V = 9 πa 3
D. V = πa 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(\widehat{B'C;\left(A'B'C'\right)}=45^0\)
=>\(\widehat{\left(B'C;B'C'\right)}=45^0\)
=>\(\widehat{C'B'C}=45^0\)
Xét ΔCC'B' vuông tại C' có \(\widehat{C'B'C}=45^0\)
nên ΔCC'B' vuông cân tại C'
=>CC'=B'C'=a*căn 2
Thể tích khối lăng trụ là:
\(V=S_{BAC}\cdot CC'=a\sqrt{2}\cdot\dfrac{1}{2}a^2=\dfrac{\sqrt{2}}{2}\cdot a^3\)
Chọn D