mình nhầm đề :t ìm a, b,c
cho a+ b + c = 12abc
và 1/a2 + 1/b2 +1/c2 = 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
Do a+b+c= 0
<=> a+b= -c
=> (a+b)2= c2
Tương tự: (c+a)2= b2, (c+b)2= a2
Ta có: \(A=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
\(=\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(c+a\right)^2}+\frac{1}{a^2+b^2-\left(a+b\right)^2}\)
\(=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}\)
\(=\frac{a+b+c}{-2abc}=0\)
Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)
\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)
\(+c\left(a^2b^2-a^2-b^2+1\right)\)
\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)
\(+ca^2b^2-a^2c-b^2c+c\)
\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)
\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)
Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)
Tương tự
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj