K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

Đáp án B

  y = 0 ⇔ x 2 = 1 x 2 = 2 m + 1 .  có 4 nghiệm phân biệt khi

2 m + 1 > 0 ; 2 m + 1 ≠ 1 ⇔ m > − 1 ; m ≠ 0 .

Khi đó 4 nghiệm là − 2 m + 1 ; − 1 ; 1 ; 2 m + 1

4 nghiệm lập thành cấp số cộng có trường hợp sau sắp xếp theo thứ tự sau

TH1: − 1 ; − 2 m + 1 ; 2 m + 1 ; 1 ⇒  khoảng cách giữa chúng là bằng nhau ⇔ 1 − 2 m + 1 = 2 2 m + 1 ⇔ 3 2 m + 1 = 1 ⇔ m = − 4 9 .

TH2: − 2 m + 1 ; − 1 ; 1 ; 2 m + 1 ⇒  khoảng cách giữa chung là bằng nhau

⇔ 2 m + 1 − 1 = 2 ⇔ m = 4

26 tháng 3 2022

1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0) 

<=> \(0=6+b\Leftrightarrow b=-6\)

2, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-1\right)x-m+4=0\)

Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay 

\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

a) Hàm có cực đại, cực tiểu khi mà $y'=-3x^2+2(m-1)x=x[2(m-1)-3x]$ có ít nhất hai nghiệm phân biệt $\Leftrightarrow 2(m-1)-3x=0$ có một nghiệm khác $0$ hay $m\neq 1$

b) Đồ thị hàm số $(\star)$ cắt trục hoành tại ba điểm phân biệt khi mà phương trình $y=-x^3+(m-1)x^2-m+2=0$ có $3$ nghiệm phân biệt

$\Leftrightarrow (1-x)[x^2+x(2-m)+(2-m)]=0$ có ba nghiệm phân biệt

$\Leftrightarrow x^2+x(2-m)+(2-m)=0$ có hai nghiệm phân biệt khác $1$

Do đó ta cần có $\left\{\begin{matrix}1+2-m+2-m=5-2m\neq 0\\ \Delta =(2-m)^2-4(2-m)>0\end{matrix}\right.$

Vậy để thỏa mãn đề bài thì $m\neq \frac{5}{2}$ và $m>2$ hoặc $m<-2$

c) Gọi điểm cố định mà đồ thị hàm số đi qua là $(x_0,y_0)$

$y_0=-x_0^3+(m-1)x_0^2-m+2$ $\forall m\in\mathbb{R}$

$\Leftrightarrow m(x_0^2-1)-(x_0^3+x_0^2+y_0-2)=0$ $\forall m\in\mathbb{R}$

$\Rightarrow\left{\begin{matrix}x_0^2=1\\ x_0^3+x_0^2+y_02=0\end{matrix}\right.\begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

Viết lại đoạn cuối:

$\Rightarrow\left{\begin{matrix}x_0^2=1\\x_0^3+x_0^2+y_0-2=0\end{matrix}\right.$ $\Rightarrow \begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$

NV
12 tháng 1 2022

Pt hoành độ giao điểm:

\(\sqrt{2x^2-2x-m}-x-1=0\)

\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)

Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)

26 tháng 9 2015

tick mk nha mình học rồi........dễ lắm!

24 tháng 11 2019

Chọn B.

Để (C) cắt trục hoành tại 3 điểm phân biệt thì phương trình

x 3 - x 2 - m x + 1 = 0  có ba nghiệm phân biệt, hay phương trình

x 3 - x 2 + 1 = m x  có ba nghiệm phân biệt.

Điều này tương đương với đường thẳng y = mx cắt đồ thị hàm số y = x 3 - x 2 + 1  tại 3 điểm phân biệt.

Đường thẳng y = mx đi qua gốc tọa độ.

Đường thẳng y = x là tiếp tuyến với đồ thị hàm số y = x 3 - x 2 + 1  (như hình minh họa trên).

Do đó với m > 1 thì đường thẳng y = mx cắt đồ thị hàm số y = x 3 - x 2 + 1  tại 3 điểm phân biệt.

25 tháng 8 2019

Chọn B.

Cách 1:

Để (C) cắt trục hoành tại 3 điểm phân biệt thì phương trình  có ba nghiệm phân biệt, hay phương trình  có ba nghiệm phân biệt.

Điều này tương đương với đường thẳng y = mx cắt đồ thị hàm số  tại 3 điểm phân biệt.

Đường thẳng y = mx đi qua gốc tọa độ.

Đường thẳng y = x là tiếp tuyến với đồ thị hàm số  (như hình minh họa trên).

Do đó với m > 1 thì đường thẳng y = mx cắt đồ thị hàm số  tại 3 điểm phân biệt.

Cách 2:

Để (C) cắt trục hoành tại 3 điểm phân biệt thì phương trình  có ba nghiệm phân biệt.

Dễ thấy x = 0 không thể là nghiệm nên 

Xét hàm số trên tập

Ta có bảng biến thiên sau:

Để phương trình  có 3 nghiệm phân biệt khi và chỉ khi m > 1.

24 tháng 8 2018

Đáp án là C