Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có một cặp vợ chồng nào là
A. 8 95
B. 43 65
C. 27 65
D. 89 65
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\left(\Omega\right)=C^3_{20}\)
A: "3 người được chọn ko có cặp vợ chồng nào"
=>\(\overline{A}\): 3 người được chọn có 1 cặp vợ chồng
=>\(n\left(\overline{A}\right)=C^1_4\cdot C^1_{18}=72\left(cách\right)\)
=>n(A)=1068
=>P=1068/1140=89/95
Số khả năng chọn ngẫu nhiên 3 người từ 6*2= 12 người là C 12 3 = 220
b. Gọi B là biến cố :” trong 3 người được chọn không có cặp vợ chồng nào” thì B ¯ là biến cố :” có đúng một cặp vợ chồng trong ba người được chọn”
( vì có 3 cách chọn cặp vợ chồng, và 10 cách chọn người thứ 3 trong số 10 người còn lại) nên
Chọn D
Số khả năng chọn ngẫu nhiên 3 người từ 6*2= 12 người là C_123= 220
a. Gọi A là biến cố:” trong 3 người được chọn có đúng 1 nam”
n(A)= C61. C62= 90. Do đó P(A) =90/220=9/22
Chọn B
Chọn B
Gọi 2 cặp vợ chồng là C1-V1 và C2-V2 (C=chồng, V=vợ).
* Số cách chọn ra 7 đôi:
- Đầu tiên chọn ra 7 nam trong 10 nam: C 10 7 (cách).
- Xếp 7 người nam này thành 1 hàng ngang, người đầu tiên có 12 cách ghép với nữ, người thứ hai có 11 cách, cứ như thế suy ra số cách ghép đôi là 12.11.10.9.8.7.6 (cách).
- Theo quy tắc nhân có
* Số cách chọn 7 đôi, chỉ có một cặp vợ chồng
- Trường hợp 1: chỉ có cặp vợ chồng C1-V1, khi đó lấy 6 nam trong 9 nam còn lại:
+ Nếu trong 6 nam này không có C2 thì số cách ghép 6 cặp còn lại là:
+ Nếu trong 6 nam này có C2 thì số cách ghép 6 cặp còn lại là: có 10 cách ghép C2 với nữ (trừ V2 và trừ V1), 5 nam còn lại có cách, số cách ghép cặp cho 5 nam này là 10.9.8.7.6 cách. Vậy theo quy tắc nhân có
Theo quy tắc cộng, có
- Trường hợp 2: chỉ có cặp vợ chồng C2-V2, tương tự như trên có 26248320(cách)
Vậy xác suất cần tính là:
Chọn ngẫu nhiên 2 người từ 20 người ta được một tổ hợp chập 2 của 20. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{20}^2\)( phần tử)
Gọi A là biến cố “Chọn được 2 người là vợ chồng”
Để chọn được 1 cặp vợ chồng lên khiêu vũ từ 10 cặp vợ chồng ta được một tổ hợp chập 1 của 10 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{10}^1\)( phần tử)
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{10}^1}}{{C_{20}^2}} = \frac{1}{{19}}\)
a) Có 10 cách chọn ngờiđànông. Khi đã chọn người đàn ông rồi, chỉ có 1 cách chọn người đàn bà là vợ của người đàn ông đó. Vậy có 10 cách.
b) Có 10 cách chọn người đàn ông. Khi đã chọn người đàn ông rồi, có 9 cách chọn người đàn bà không là vợ của người đàn ông đó. Vậy có 10 × 9 = 90 cách chọn.
Để chọn một người đàn ông và một người phụ nữ không là vợ chồng, ta có
Có 10 cách chọn người đàn ông.
Có 9 cách chọn người phụ nữ ( trừ 1 người là vợ của người đàn ông đã chọn trước đó).
Vậy theo qui tắc nhân ta có 10.9 = 90 cách.
Chọn đáp án D.
Chọn D
xin lỗi vì đã quá trễ nhưng giải cho người khác biết =(
thì tính kgm n(Ω)= 20C3
tiếp theo mk có biến cố A : " Ba người thì trong đó ko có 1 cặp vợ chồng nào"
\(\rightarrow\overline{A}:\)" Ba người trong đó có ít nhất 1 cặp vợ chồng" ( biến cố đối)
Chọn ra 1 cặp vợ chồng từ 4 cặp : 4C1 cách
- 1 cặp đã có sẵn 2 người r mà mình đã chọn 1 cặp thì số người còn lại là 18 người
=> 18C1 cách
\(P_{\overline{A}}=\dfrac{n\overline{A}}{n\Omega}\) \(=\dfrac{4C1.18C1}{20C3}\)
=> P(A) = 1 - P(\(\overline{A}\) ) => câu D nhóa