Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại A,BC=2a,AC=a/2,SB vuông góc với đáy. Góc giữa cạnh bên SC và mặt đáy bằng 60 độ. Tính theo a thể tích khối chóp S.ABC
A. a 3 5 2
B. a 3 5 4
C. a 3 5 12
D. a 3 5 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Gọi H là hình chiếu vuông góc của S trên (ABC)
Ta có A C ⊥ S H C ⇒ A C ⊥ H C ⇒ H C / / A B .
Tương tự A B ⊥ S H B ⇒ A B ⊥ H B ⇒ H B / / A C
Vậy H là đỉnh thứ tư của hình vuông BACH như hình vẽ sau:
Khi ấy, ta có: A H = 2 a 2 ⇒ S H = 2 a 6
⇒ V S . A B H C = 1 3 S H . S A B H C = 1 3 2 a 6 .4 a 2 = 8 6 a 3 3
⇒ V S . A B C = 1 2 V S . A B H C = 4 6 a 3 3
Đáp án D
Ta có S H ⊥ A B C ⇒ S B ; A B C ^ = S B ; B C ^ = S B C ^ = 60 °
Tam giác SBH vuông tại H, có S H = tan 60 ° . B H = a 3
Và S A B C = 1 2 . A B . A C = a 2 3 2 .
Vậy thể tích khối chóp là V S . A B C D = 1 3 . S H . S A B C = 1 3 a 3 a 2 3 2 = a 3 2
Đáp án A
Từ giả thiết, ta suy ra góc giữa SC và mặt đáy chính là góc SCA. Suy ra tam giác SAC vuông cân ở A, và SA=AC=a.
Thể tích khối chóp là
V = 1 3 S A B C = 1 3 . 3 4 a 2 . a = 3 12 a 3
Đáp án A
Dễ thấy ( S C , ( A B C ) ) ^ = SAC (vì SA ⊥ (ABC))
ð SA = AC.tan60° = a 3
Ta có:
V S A B C = 1 3 . S A B C . a 3 = 1 3 . 1 2 . a . a . a 3 = a 3 3 6
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Đáp án B