K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Đáp án B

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
27 tháng 12 2018

Đáp án A

Suy ra 

= 3a

11 tháng 2 2019

Đáp án A

20 tháng 8 2017

Đáp án B.

Gọi H là hình chiếu vuông góc của S trên (ABC)

Ta có A C ⊥ S H C ⇒ A C ⊥ H C ⇒ H C / / A B .

Tương tự A B ⊥ S H B ⇒ A B ⊥ H B ⇒ H B / / A C     

Vậy H là đỉnh thứ tư của hình vuông BACH như hình vẽ sau:

Khi ấy, ta có:  A H = 2 a 2 ⇒ S H = 2 a 6

⇒ V S . A B H C = 1 3 S H . S A B H C = 1 3 2 a 6 .4 a 2 = 8 6 a 3 3

⇒ V S . A B C = 1 2 V S . A B H C = 4 6 a 3 3

1 tháng 3 2019

Đáp án D

Ta có   S H ⊥ A B C ⇒ S B ; A B C ^ = S B ; B C ^ = S B C ^ = 60 °

Tam giác SBH vuông tại H, có   S H = tan 60 ° . B H = a 3

  S A B C = 1 2 . A B . A C = a 2 3 2 .

Vậy thể tích khối chóp là   V S . A B C D = 1 3 . S H . S A B C = 1 3 a 3 a 2 3 2 = a 3 2

27 tháng 1 2017

Đáp án D

19 tháng 5 2019

Đáp án A

Từ giả thiết, ta suy ra góc giữa SC  mặt đáy chính  góc SCA. Suy ra tam giác SAC vuông cân  A,  SA=AC=a.

Thể tích khối chóp 

V = 1 3 S A B C = 1 3 . 3 4 a 2 . a = 3 12 a 3

27 tháng 6 2018

Đáp án A

Dễ thấy ( S C , ( A B C ) ) ^  =  SAC (vì SA ⊥ (ABC))

ð SA = AC.tan60° = a 3  

Ta có:

V S A B C = 1 3 . S A B C . a 3 = 1 3 . 1 2 . a . a . a 3 = a 3 3 6

 

3 tháng 7 2017

Đáp án C.

Hướng dẫn giải: Gọi H là trung điểm AC.

Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.

Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC

suy ra S H ⊥ ( A B C )

Tam giác vuông  SBH, có

 

Tam giác vuông  ABC ,

có  A B = A C 2 - B C 2 = a 3

Diện tích tam giác vuông

S ∆ A B C = 1 2 B A . B C = a 3 2 2

Vậy  V S . A B C = 1 3 S ∆ A B C . S H = a 3 2