chứng minh rằng
7. 5^2n+12.6^n chia hết cho 19
giúp mk nha, mk se tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22020-22017 = 23.22017 - 22017 = 22017.(23-1) = 22017.7 chia hết cho 7
Có : 2^2020 - 2^2017 = 2^2017.(2^3-1) = 2^2017.7 chia hết cho 7
k mk nha
a/ Đặt \(x^{10}=a\) ta có:
\(A=a^{197}+a^{193}+a^{198}\)
\(=a^{193}\left(a^4+1+a^5\right)\)
\(=a^{193}\left[\left(a^5+a^4+a^3\right)-\left(a^3+a^2+a\right)+\left(a^2+a+1\right)\right]\)
\(=a^{193}\left(a^2+a+1\right)\left(a^3-a+1\right)⋮\left(a^2+a+1\right)\)
Vậy có ĐPCM
b/ \(B=7.5^{2n}+12.6^n=\left(7.25^n-7.6^n\right)+19.6^n\)
\(=7\left(25-6\right)G\left(n\right)+19.6^n=7.19.G\left(n\right)+19.6^n⋮19\)
\(5^2=25=6\) [19]
\(\Rightarrow A=7.6^n+12.6^n=19.6^n\) [19]
Do đó: \(A⋮19\)
7.52n + 12.6n
= 7.52n + ( 19 - 7 ). 6n
= 7.52n + 19. 6n - 7.6n
= 7.52n - 7.6n + 19. 6n
= 7(52n - 6n ) + 19.6n
= 7(25n - 6n ) + 19.6n
Xét 7(25n - 6n ) \(⋮\) 19; 19.6n \(⋮\)19
=> đpcm
10^6 - 5^7 = 5^6 . 2^6 - 5^6. 5 = 5^6 . ( 2^6- 5 ) = 5^6 . 59
mà 5^6. 59 chia hết cho 59 => 10^6 - 5^7 chia hết cho 59
( ĐPCM)
Gọi A = a + 2b và B = abb
Ta có : B = 100a + 11b và :
100A = 100 . ( a + 2b )
100A = 100a + 200b
=> 100A - B = 100a + 200b - 100a - 11b
=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )
=> 100A - B chia hết cho 7
mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )