K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Phương trình x2 + 2(m – 1)x + m2 = 0

Có a = 1; b = 2(m – 1); c = m2 nên b’ = m-1

⇒ Δ’ = b'2 – ac = (m – 1)2 – m2 = - 2m + 1.

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ - 2m + 1 ≥ 0 ⇔ m ≤ 1/2.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy với m ≤ ½, phương trình có hai nghiệm có tổng bằng -2(m – 1), tích bằng m2

8 tháng 3 2017

a) Phương trình  x 2 − 2 x + m = 0

Có a = 1; b = -2; c = m nên b’= -1

⇒ Δ ' = ( − 1 ) 2 − 1 ⋅ m = 1 − m

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ 1 – m ≥ 0 ⇔ m ≤ 1.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy với m ≤ 1, phương trình có hai nghiệm có tổng bằng 2; tích bằng m.

b) Phương trình

  x 2 + 2 ( m − 1 ) x + m 2 = 0 C ó   ( a = 1 ; b = 2 ( m − 1 ) c = m 2  nên  b ' = m − 1 ⇒ Δ ' = b ' 2 − a c = ( m − 1 ) 2 − m 2 = − 2 m + 1

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ - 2m + 1 ≥ 0 ⇔ m ≤ 1/2.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy với m ≤ ½, phương trình có hai nghiệm có tổng bằng -2(m – 1), tích bằng  m 2

2 tháng 11 2019

Phương trình x2 – 2x + m = 0

Có a = 1; b = -2; c = m nên b’= -1

⇒ Δ’ = (-1)2 – 1.m = 1 – m

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ 1 – m ≥ 0 ⇔ m ≤ 1.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

 

Vậy với m ≤ 1, phương trình có hai nghiệm có tổng bằng 2; tích bằng m.

8 tháng 6 2023

a) Để phương trình có 2 nghiệm phân biệt 

<=> \(\Delta=\left[-\left(4m+3\right)^2\right]-4.2.\left(2m-1\right)=16m^2+24m+9-16m+8=16m^2+8m+1+16=\left(4m+1\right)^2+16>0\)

với mọi giá trị của m. 

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.

b) Vì phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m nên ta có: x1+x2\(\dfrac{4m+3}{2}\)và x1.x2=\(\dfrac{2m-1}{2}\)

15 tháng 3 2018

2 x 2  – (4m + 3)x + 2 m 2  – 1 = 0 (2)

Phương trình (2) có nghiệm khi và chỉ khi ∆ ≥ 0

Ta có:  ∆  = - 4 m + 3 2  – 4.2(2 m 2  – 1)

= 16 m 2  + 24m + 9 – 16 m 2  + 8 = 24m + 17

∆   ≥  0 ⇔ 24m + 17  ≥  0 ⇔ m  ≥  -17/24

Vậy khi m  ≥  -17/24 thì phương trình đã cho có nghiệm.

Giải phương trình (2) theo m:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

17 tháng 11 2018

Thay x = −3 vào phương trình

(m – 2)x2 – (m2 + 1)x + 3m = 0, ta có:

(m – 2) (−3)2 – (m2 + 1) (−3) + 3m = 0

⇔ 9m – 18 + 3m2 + 3 + 3m = 0

⇔ 3m2 + 12m – 15 = 0

⇔ m2 + 4m – 5 = 0

⇔ m2 – m + 5m – 5 = 0

⇔ m (m – 1) + 5 (m – 1) = 0

⇔ (m – 1) (m + 5) = 0 ⇔ m = 1 m = − 5

Suy ra tổng các giá trị của m là (−5) + 1 = −4

Đáp án cần chọn là: B

16 tháng 1 2017

a) Ta có: a = 7, b= 2(m-1),  c   =   -   m 2

Suy ra:  Δ '   =   ( m   -   1 ) 2   +   7 m 2

Do   ( m - 1 ) 2   ≥   0 mọi m và m 2   ≥   0  mọi m

=> ∆’≥ 0 với mọi giá trị của m.

Do đó phương trình có nghiệm với mọi giá trị của m.

b) Gọi hai nghiệm của phương trình là  x 1 ;   x 2 .

Theo định lý Vi-et ta có: Giải bài 62 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó:

Giải bài 62 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

4 tháng 4 2017

a) Phương trình x2– 2x + m = 0 có nghiệm khi ∆' = 1 - m ≥ 0 hay khi m ≤ 1

Khi đó x1 + x2 = 2, x1 . x2 = m

b) Phương trình x2 – 2(m – 1)x + m2 = 0 có nghiệm khi

\(\text{∆}'=m^2-2m+1-m^2=1-2m\ge0\)' hay khi m \(\le\dfrac{1}{2}\)

Khi đó x1 + x2 = -2(m – 1), x1 . x2 = m2

4 tháng 4 2017

a) Phương trình x2– 2x + m = 0 có nghiệm khi ∆' = 1 - m ≥ 0 hay khi m ≤ 1

Khi đó x1 + x2 = 2, x1 . x2 = m

b) Phương trình x2 – 2(m – 1)x + m2 = 0 có nghiệm khi

∆' = m2 - 2m + 1 – m2 = 1 – 2m ≥ 0 hay khi m ≤

Khi đó x1 + x2 = -2(m – 1), x1 . x2 = m2

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)