K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

Ta có: OA = OC (bán kính) nên ΔOAC cân tại O.

Để học tốt Toán 9 | Giải bài tập Toán 9

Lại có O'A = O'D (bán kính) nên ΔO'AD cân tại O'

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy OC // O'D (có hai góc so le trong bằng nhau).

3 tháng 6 2019

Ta có: OA = OC (bán kính) nên ΔOAC cân tại O.

suy ra  C ^ = O A C ^     1

 

Lại có O'A = O'D (bán kính) nên ΔO'AD cân tại O'

Vậy OC // O'D (có hai góc so le trong bằng nhau).

25 tháng 4 2017


dap-an-bai33

Tam giác COA cân: ∠C = ∠A1
Tam giác DO’A cân: ∠D = ∠A2
Mà ∠A1 = ∠A2 (đối đỉnh)
⇒ ∠C = ∠D ⇒ OC//O’D

30 tháng 9 2021

Ta có \(\widehat{OAC}=\widehat{O'AD}\left(đối.đỉnh\right)\)

Mặt khác \(\Delta OAC.cân.tại.O\left(OA=OC\right)\)

Nên \(\widehat{OAC}=\widehat{OCA}\)

Tương tự \(\Delta O'AD.cân.tại.O'\left(O'A=O'D\right)\)

Nên \(\widehat{O'AD}=\widehat{O'DA}\)

\(\Rightarrow\widehat{OCA}=\widehat{ADO'}\)

Mà 2 góc này ở vị trí so le trong

Vậy \(OC//O'D\)

1 tháng 7 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: O, A, O’ thẳng hàng

C, A, B thẳng hàng

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

7 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: OA = OB (= R)

Suy ra tam giác AOB cân tại O

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: OB // O’C (vì có hai góc ở vị trí đồng vị bằng nhau)

3 tháng 5 2022

undefined

a) xét tứ giác ACEO có :

\(\widehat{CAO}\) = 900 ( tính chất tiếp tuyến )

\(\widehat{CEO}\) = 900 ( tính chất tiếp tuyến )

ta có : \(\widehat{CAO}\) + \(\widehat{CEO}\) = 1800

mà hai góc này nằm ở vị trí đối nhau 

==> tứ giác ACEO nội tiếp 

hay bốn điểm A C E O  cùng thuộc một đường tròn 

23 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì AB ⊥ KB nên AE ⊥ KB

Lại có: AB = BE (tính chất đối xứng tâm)

Suy ra: KA = KE (tính chất đường trung trực)     (3)

Ta có: IO = IO’ (gt)

IA = IK (chứng minh trên)

Tứ giác AOKO’ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

Suy ra: OK // O’A và OA // O’K

CA ⊥ O’A (vì CA là tiếp tuyến của đường tròn (O’))

OK // O’A (chứng minh trên)

Suy ra: OK ⊥ AC

Khi đó OK là đường trung trực của AC

Suy ra: KA = KC (tính chất đường trung trực)     (4)

DA ⊥ OA (vì DA là tiếp tuyến của đường tròn (O))

O’K // OA (chứng minh trên)

Suy ra: O’K ⊥ DA

Khi đó O’K là đường trung trực của AD

Suy ra: KA = KD (tính chất đường trung trực)     (5)

Từ (3), (4) và (5) suy ra: KA = KC = KE = KD

Vậy bốn điểm A, C, E, D cùng nằm trên một đường tròn.3