Một hộp đựng 40 viên bi trong đó có 20 viên bi đỏ, 10 viên bi xanh, 6 viên bi vàng,4 viên bi trắng. Lấy ngẫu nhiên 2 bi, tính xác suất biến cố A: “ lấy được 2 viên bi cùng màu”.
A. 4 195
B. 6 195
C. 4 15
D. 64 195
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Gọi các biến cố: D: “lấy được 2 bi viên đỏ” ta có
X: “lấy được 2 bi viên xanh” ta có:
V: “lấy được 2 bi viên vàng” ta có:
T: “ lấy được 2 bi màu trắng” ta có :
Ta có D; X; V; T là các biến cố đôi một xung khắc và A= D ∪ X ∪ V ∪ T
Chọn B.
Ta có, số phần tử của không gian mẫu n ( Ω ) = C 10 2
Gọi các biến cố: D: “lấy được 2 viên đỏ” ; X: “lấy được 2 viên xanh” ;
V: “lấy được 2 viên vàng”
Ta có D, X, V là các biến cố đôi một xung khắc và C = D ∪ X ∪ V
P ( C ) = P ( D ) + P ( X ) + P ( V ) = C 4 2 C 10 2 + C 3 2 C 10 2 + C 2 2 C 10 2 = 2 9
Chọn đáp án B
Số cách chọn 4 viên bi có đúng hai viên bị màu trắng là:
Suy ra:n(A)=4095.
Chọn C.
a) Cách lấy 2 viên bi trong túi là:
Xanh – đỏ; Xanh – trắng; Xanh – vàng; Đỏ - trắng; Đỏ - vàng; Trắng – vàng.
Có 6 cách lấy hai biên bi từ trong túi.
Biến cố \(A\) xảy ra khi 2 viên bi lấy ra có 1 viên bi màu đỏ
Có 3 kết quả thuận lợi cho biến cố \(A\) là Xanh – đỏ; Đỏ - trắng; Đỏ - vàng
Xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra có 1 viên bi màu đỏ là \(\frac{1}{2}\).
b) Biến cố \(B\) xảy ra khi 2 viên bi lấy ra đều không có màu trắng
Có 3 kết quả thuận lợi cho \(B\) là : Xanh – đỏ; Xanh – vàng; Đỏ - vàng.
Xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{3}{6} = \frac{1}{2}\).
Vậy xác suất 2 viên bi lấy ra không có viên bi nào màu trắng là \(\frac{1}{2}\).
Số cách lấy 4 viên bi mà không có viên bi màu đỏ được chọn là:
Suy ra :
Chọn C.
Chọn A
Lời giải
Không gian mẫu là số sách chọn ngẫu nhiên mỗi hộp 1 viên bi
Số phần tử của không gian mẫu là Ω = C 15 1 . C 18 1
Gọi X là biến cố "2 viên bi lấy ra từ mỗi hộp có cùng màu"
Ta có các kết quả thuận lợi cho biến cố X như sau
● Hộp A lấy ra 1 bi trắng và hộp B lấy ra 1 bi trắng, có C 4 1 . C 7 1 cách
● Hộp A lấy ra 1 bi đỏ và hộp B lấy ra 1 bi đỏ, có C 5 1 . C 6 1 cách
● Hộp A lấy ra 1 bi xanh và hộp B lấy ra 1 bi xanh, có C 6 1 . C 5 1 cách
Suy ra số phần tử của biến cố
Vậy xác suất cần tính
P ( X ) = Ω x Ω = 44 135
Trong bình có tổng cộng \(5+6+7=18\) viên bi
Không gian mẫu: \(n_{\Omega}=C_{18}^4=3060\)
a. Gọi A là biến cố "trong 4 viên bi được chọn có đúng 1 viên đỏ"
Chọn 1 viên bi đỏ từ 5 viên đỏ: \(C_5^1\) cách
Chọn 3 viên còn lại từ 13 viên (6 trắng 7 vàng): \(C_{13}^3\) cách
\(\Rightarrow n_A=C_5^1.C_{13}^3=1430\)
Xác suất: \(P=\dfrac{1430}{3060}=...\)
b. Gọi B là biến cố "4 viên được chọn có ít nhất 2 viên vàng"
Chọn 4 viên có đúng 1 viên vàng (1 viên vàng và 3 viên từ 2 loại khác): \(C_7^1.C_{11}^3=1155\) cách
Chọn 4 viên không có viên vàng nào: \(C_{11}^4=330\) cách
Xác suất: \(P_B=1-\dfrac{1155+330}{3060}=...\)
Ta có: số phần tử của không gian mẫu là Ω = C 40 2
Gọi các biến cố: D: “lấy được 2 bi viên đỏ” ta có: n D = C 20 2 = 190 ;
X: “lấy được 2 bi viên xanh” ta có: n X = C 10 2 = 45 ;
V: “lấy được 2 bi viên vàng” ta có: n V = C 6 2 = 15 ;
T: “ lấy được 2 bi màu trắng” ta có: n T = C 4 2 = 6 .
Ta có D,X,V,T là các biến cố đôi một xung khắc và A = D ∪ X ∪ V ∪ T
Suy ra xác xuất để lấy được 2 viên bi cùng màu là:
P A = P D + P X + P V + P T = 256 C 40 2 = 64 195 .
Chọn đáp án D.