K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `AMB` và Tam giác `AMC` có:

`AM chung`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`

b, Vì Tam giác `AMB =` Tam giác `AMC (a)`

`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).

Xét Tam giác `EAM` và Tam giác `FAM` có:

AM chung

\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`

\(\widehat{AEM}=\widehat{AFM}=90^0\)

`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`

`=> EA = FA` (2 cạnh tương ứng).

c, *câu này mình hơi bí bn ạ:')

loading...

 

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là đường cao

BC=12cm nên BM=6cm

=>AM=8(cm)

c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác

=>AI là phân giác của góc BAC

mà AM là phân giác của góc BC

nên A,I,M thẳng hàng

13 tháng 12 2023

loading... a) Do M là trung điểm của BC (gt)

⇒ BM = CM

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆AMB và ∆AMC có:

AM là cạnh chung

AB = AC (cmt)

BM = CM (cmt)

⇒ ∆AMB = ∆AMC (c-c-c)

b) Sửa đề:

Chứng minh AM EF

Giải:

Gọi D là giao điểm của AM và EF

Do ∆AMB = ∆AMC (cmt)

⇒ ∠MAB = ∠MAC (hai góc tương ứng)

⇒ ∠MAE = ∠MAF

Xét hai tam giác vuông: ∆MAE và ∆MAF có:

AM là cạnh chung

∠MAE = ∠MAF (cmt)

⇒ ∆MAE = ∆MAF (cạnh huyền - góc nhọn)

⇒ AE = AF (hai cạnh tương ứng)

Do ∠MAE = ∠MAF (cmt)

⇒ ∠DAE = ∠DAF 

Xét ∆ADE và ∆ADF có:

AD là cạnh chung

∠DAE = ∠DAF (cmt)

AE = AF (cmt)

⇒ ∆ADE = ∆ADF (c-g-c)

⇒ ∠ADE = ∠ADF (hai góc tương ứng)

Mà ∠ADE + ∠ADF = 180⁰ (kề bù)

⇒ ∠ADE = ∠ADF = 180⁰ : 2 = 90⁰

⇒ AD ⊥ EF

13 tháng 12 2023

.