K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Đường tròn (C):  x 2 + y 2 + 4 x + 2 y + 4 = 0  có tâm I(-2;-1) và bán kính R = 1.

Gọi 2 tiếp điểm là B và C.

Ta có: B A C ^ = 60 0 nên B A I ^ = I A C ^ = 1 2 B A C ^ = 30 0 ( tính  chất 2 tiếp tuyến cắt nhau).

Vì sin B A I ^ = sin 30 0 = 1 2 ;  lại có:   sin B A I ^ = B I A I = R A I

Suy ra:  R A I = 1 2 ⇔ A I = 2 R = 2  ( vì R = 1)

⇔ m + 2 2 + 3 − m 2 = 2 2 ⇒ 2 m 2 − 2 m + 9 = 0  (vô nghiệm).

Chọn D.

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)

NV
22 tháng 4 2023

Em ghi lại pt đường tròn nhé, bị lỗi rồi

15 tháng 5 2023

a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:

$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$

Với I là tâm đường tròn, A là điểm trên đường tròn.

Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$

Thay vào công thức ta được:

$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$

Vậy bán kính của đường tròn là $\sqrt{34}$.

Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:

$(x-2)^2 + (y-3)^2 = 34$

b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.

Ta có phương trình đường tròn chính giữa:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Tại điểm M(x,y) trên đường tròn, ta có:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:

$y - y_M = y'(x-x_M)$

Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:

$y + 5 = \frac{-(x-1)}{y+5}(x-1)$

Simplifying:

$x(y+5) + y(x-1) = 6$

Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến

16 tháng 5 2023

Toán lớp 10 không dùng đạo hàm.

NV
19 tháng 1 2022

Giả sử đường tròn đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m ta luôn có:

\(x_0^2+y_0^2+\left(m+2\right)x_0-\left(m+4\right)y_0+m+1=0\)

\(\Leftrightarrow m\left(x_0-y_0+1\right)+\left(x_0^2+y_0^2+2x_0-4y_0+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-y_0+1=0\\x_0^2+y_0^2+2x_0-4y_0+1=0\end{matrix}\right.\)

\(\Rightarrow x_0^2+\left(x_0+1\right)^2+2x_0-4\left(x_0+1\right)+1=0\)

\(\Rightarrow2x_0^2-2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=1\Rightarrow y_0=2\\x_0=-1\Rightarrow y_0=0\end{matrix}\right.\)

Vậy đường tròn luôn đi qua 2 điểm cố định có tọa độ \(\left(1;2\right);\left(-1;0\right)\) với mọi m

23 tháng 4 2023

a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.

b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$

c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:

Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.

Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.

Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$

$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$

23 tháng 4 2023
23 tháng 4 2023

Tên quen ta :))

(C): x^2-2x+1+y^2+4y+4=9

=>(x-1)^2+(y+2)^2=9

=>I(1;-2); R=3

Khi x=1 và y=5 thì (1-1)^2+(5+2)^2=49<>9

=>A nằm ngoài (C)

Gọi (d): y=ax+b là phương trình tiếp tuyến tại A của (C)

Thay x=1 và y=5 vào (d), ta được:

a+b=5

=>b=5-a

=>y=ax+5-a

=>ax-y-a+5=0

Theo đề, ta có: d(I;(d))=3

=>\(\dfrac{\left|1\cdot a+\left(-2\right)\cdot\left(-1\right)-a+5\right|}{\sqrt{a^2+1}}=3\)

=>9a^2+9=(a+2-a+5)^2

=>9a^2+9=49

=>9a^2=40

=>a^2=40/9

=>\(a=\pm\dfrac{2\sqrt{10}}{3}\)

=>\(b=5\mp\dfrac{2\sqrt{10}}{3}\)