K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

\(\Leftrightarrow\left(2x+1\right)^3=3^3\\ \Leftrightarrow2x+1=3\\ \Leftrightarrow x=1\)

27 tháng 9 2021

271 ko bt đung ko

27 tháng 9 2021

sai r sorry b

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

a/

Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12. 

$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$

Nếu $2x+1=1\Rightarrow y-3=12$

$\Rightarrow x=0; y=15$

Nếu $2x+1=3\Rightarrow y-3=4$

$\Rightarrow x=1; y=7$ 

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

b/

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$

$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)

Lấy (2) trừ (1) theo vế thì:

$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$

$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$

$2^x(2^{2016}-1)=2^3(2^{2016}-1)$

$\Rightarrow 2^x=2^3$

$\Rightarrow x=3$

1 tháng 12 2018

a) Ta có:  ( 2 x + 1 ) 3 = 3 3 nên 2x + 1 = 3. Do đó x = 1.

b) Ta có: ( 2 x - 1 ) 3 = 5 3 nên 2x - 1 = 5. Do đó x = 3.

26 tháng 4 2017

a) x = 2 

b) x = 2     

c) x = 2

d) x = 1.

23 tháng 2 2020

Bài 3:

x-1 thuoc Ư(4)={1;2;4}

TH1: x-1=1                   TH2: x-1=2

          x=2                             x=3

TH3: x-1=4

           x=5

23 tháng 2 2020

=>x thuộc {2;3;5}

29 tháng 11 2021

\(\Rightarrow\left(2x+1\right)\left(y-3\right)=15=1\cdot15=3\cdot5\)

Với \(x\in N\Rightarrow2x+1\ge1;2x+1\) lẻ

\(\left\{{}\begin{matrix}2x+1=1\\y-3=15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=18\end{matrix}\right.\\ \left\{{}\begin{matrix}2x+1=15\\y-3=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=7\\y=4\end{matrix}\right.\\ \left\{{}\begin{matrix}2x+1=3\\y-3=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=8\end{matrix}\right.\\ \left\{{}\begin{matrix}2x+1=5\\y-3=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;3;7\right\}\)