K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

Đáp án A

Thêm vào hai chữ số 1 vào tập hợp các chữ số đã cho ta được tập

Xem các số 1 là khác nhau thì mỗi hoán vị của 6 phần tử của E cho ta một số có 6 chữ số thỏa mãn bài toán. Như vậy ta có 6! số. Tuy nhiên khi hoán vị vủa ba số 1 cho nhau thì giá trị con số không thay đổi nên mỗi số như vậy ta đếm chúng đến 3! lần. 

Vậy số các số thỏa mãn yêu cầu bài toán là số.

Chú ý: Ta có thể giải như sau, ta gọi số 6 chữ số cần tìm là , chọn 3 vị trí trong 6 vị trí để đặt ba chữ số 1 có cách, xếp 3 chữ số 2,3,4 vào ba vị trí còn lại có 3! cách do đó 

7 tháng 8 2017

Đáp án A

Thêm vào hai chữ số 1 vào tập hợp các chữ số đã cho ta được tập E = {1,1,1,2,3,4}

Xem các số 1 là khác nhau thì mỗi hoán vị của 6 phần tử của E cho ta một số có 6 chữ số thỏa mãn bài toán. Như vậy ta có 6! số. Tuy nhiên khi hoán vị vủa ba số 1 cho nhau thì giá trị con số không thay đổi nên mỗi số như vậy ta đếm chúng đến 3! lần.

Vậy số các số thỏa mãn yêu cầu bài toán là 6 ! 3 ! = 4 . 5 . 6 = 120   s ố .

Chú ý: Ta có thể giải như sau, ta gọi số 6 chữ số cần tìm là a b c d e f , chọn 3 vị trí trong 6 vị trí để đặt ba chữ số 1 có  C 6 3 cách, xếp 3 chữ số 2, 3, 4 vào ba vị trí còn lại có 3! cách do đó C 6 3 . 3 ! = 120

21 tháng 11 2019

Đáp án B

NV
19 tháng 12 2020

Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số

(Đây là loại hoán vị lặp)

 

19 tháng 12 2020

Cảm bạn

20 tháng 11 2021

Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).

TH1: \(h=0\)

\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.

\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.

TH2: \(h=5\)

\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.

\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.

Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.

20 tháng 11 2021

Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.

9 tháng 10 2023

18 chữ số(mình ko chắc đâu)

29 tháng 11 2018

Xét các số tự nhiên có bảy chữ số được lập từ {1;2;2;2;3;4;5;6;7}.

Ta thấy có   số như vậy.

Tuy nhiên khi hoán vị vị trí của ba số 2 cho nhau thì số thu được không thay đổi.

Vậy có  số thỏa yêu cầu bài toán.

chọn B.

29 tháng 10 2021

Chữ số 2 xuất hiện 3 lần.

Coi chữ số đc lập nên từ 6 chữ số tập \(A=\left\{1,2,2,2,3,4\right\}\)

Gọi số cần lập là \(\overline{abcdef}\in A\)

Chọn a có 6 cách chọn.

Xếp 5 số của \(A\backslash\left\{a\right\}\) vào 5 vị trí còn lại có 5! cách xếp.

Mà chữ số 2 lặp lại 3 lần\(\Rightarrow\) có 3! cách xếp.

Vậy số các số cần lập:

 \(\dfrac{6\cdot5!}{3!}=120\left(số\right)\)

10 tháng 3 2021

Chọn 4 chữ số còn lại : \(C^4_6\)

Số số cần tìm : \(\dfrac{C^4_6\cdot7!}{3!}\)

15 tháng 9 2019