K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

Đáp án A

Sử dụng bất đẳng thức vectơ:

Dấu bằng xảy ra khi và chỉ khi hai vectơ này ngược hướng. Suy ra đáp án A.

Hai đáp án B và C xuất phát từ sai lầm

7 tháng 10 2018

Đáp án C

Áp dụng bất đẳng thức vectơ

Dấu bằng xảy ra khi 2 vectơ  cùng hướng. Vậy độ dài của vectơ | a →   -   2 b → | ≥ 0 nhỏ nhất bằng 1.

Suy ra đáp án đúng là C.

3 tháng 5 2019

27 tháng 6 2017

Gọi  M a ; b ;   N c ; d

Khi đó ta có M thuộc đường tròn x - 1 2 + y - 2 2 = 1 C  và N thuộc đường thẳng 

Đường tròn (C) có tâm I 1 ; 2 , bán kính  R = 1

Ta có 

Khi đó

Chọn D.

21 tháng 9 2019

Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

a 2 + b 2 ≥ 2 a b ,   b 2 + c 2 ≥ 2 b c ,   c 2 + a 2 ≥ 2 c a  

Do đó:  2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9

Dấu bằng xảy ra khi  a = b = c = 3 . Vậy MinP= 9 khi  a = b = c = 3

Vì  a ,   b ,   c   ≥ 1 , nên  ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b

Tương tự ta có  b c + 1 ≥ b + c ,   c a + 1 ≥ c + a  

Do đó  a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6

Mà   P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18

⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Vậy maxP= 18 khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

20 tháng 2 2019

Đáp án B

Từ giả thiết suy ra

Do đó AB ≥ |OA - OB| = 1. Dấu bằng xảy ra khi O nằm ngoài đoạn AB. Suy ra đáp án đúng là B.

Hai đáp án A, D sai do nhầm OA =  x 2   +   y 2   +   z 2  = 4; OB =    m 2   +   n 2   +   p 2  = 9

Đáp án C sai do nhầm với câu hỏi vectơ AB có độ dài lớn nhất

28 tháng 6 2020

Do \(a\ge1;b\ge1;c\ge1\left(nên\right)\)

\(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\ge0\)

\(\Leftrightarrow ab+bc+ac+3\ge2\left(a+b+c\right)\Leftrightarrow a+b+c\le5\)

khi đó \(P=3a+2b+c-1=3\left(a+b+c\right)-\left(b+2c\right)-1\le15-3-1=11\)

dấu = xảy ra khi a=3 , b=c=1 

=> GTLN(P)=11

Mặt khác \(\left(a+b\right)\left(a+c\right)=ab+bc+ca+a^2\ge8\)

nên ta có \(P=2\left(a+b\right)\left(a+c\right)-1\ge2\sqrt{2\left(a+b\right)\left(a+c\right)}\ge2\sqrt{16}-1=7\)

dấu = xảy ra khi a=b=1, c=3

zậy ..

28 tháng 6 2020

mình cảm ơn bạn 

4 tháng 5 2018

Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2

Theo Cauchy có: 

\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)

=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)

Hoặc:

P2= (a2+b2+c2)(b2+c2+a2

Theo Bunhiacopxki có:

P2= (a2+b2+c2)(b2+c2+a2\(\ge\)(ab+bc+ca)2=92

=> P\(\ge\)9  => Pmin=9

5 tháng 5 2018

Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)

\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)

\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)

Cộng từng vế của (1), (2) và (3) ta được: 

ab + bc + ca -2(a +b +c) + 3 \(\ge0\)

=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)

Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)

=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)

Vậy GTLN của P là 18 

Dâu "=" xảy ra khivà chỉ khi:

a =b=1, c=4 

hoặc: b=c=1, a=4

hoặc: c=a=1, b=4

DD
25 tháng 7 2021

Do vai trò của \(a,b\)là như nhau nên giả sử \(a\ge b\).

Ta có nhận xét rằng \(ab\)lớn nhất khi giá trị của \(a\)và \(b\)bằng nhau hoặc \(a-b=1\).

Nếu \(a-b>1\): ta thay tích \(ab\)bởi tích \(\left(a-1\right)\left(b+1\right)\)được

\(\left(a-1\right)\left(b+1\right)-ab=ab+a-b-1-ab=a-b-1>0\)

do đó \(a-b\le1\).

Vì \(a,b\)là số tự nhiên mà \(a+b=2019\)là số lẻ nên \(P\)đặt max tại \(a-b=1\)

\(\Rightarrow\hept{\begin{cases}a=1010\\b=1009\end{cases}}\)

Vậy \(maxP=1010.1009\).

31 tháng 3 2022

\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)

\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\)   \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)

" = " \(\Leftrightarrow a=b=c=1\)

 

31 tháng 3 2022

Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$

Ta chứng minh bất đẳng thức phụ sau: 

Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$

Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$

Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)

Do đó bất đẳng thức được chứng minh 

Dấu $"="$ xảy ra khi $x=1$

Trở lại bài toán: 

Áp dụng BĐT $(*)$ ta được:

$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$

Do $a^2+b^2+c^2=3$

Vậy $GTNN=9$

Dấu $"="$ xảy ra khi: $a=b=c=1$