K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

Bài tập cuối tuần Toán lớp 3 Tuần 9 có đáp án (Đề 1) | Đề kiểm tra cuối tuần Toán 3 có đáp án

Bài 2: 

a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)

=>ΔCFE đều

b: Xét tứ giác ABCD có 

\(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ABCD là tứ giác nội tiếp

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

b: Xét tứ giác ADEN có 

NE//AD
NE=AD
Do đó: ADEN là hình bình hành

a) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{AFM}=90^0\)(gt)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC có

M là trung điểm của BC(gt)

MF//AB(cùng vuông góc với AC)

Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(cmt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AE=MF(AFME là hình chữ nhật)

nên \(AE=\dfrac{AB}{2}\)

mà A,E,B thẳng hàng(gt)

nên E là trung điểm của AB

Ta có: F là trung điểm của NM(gt)

nên \(MN=2\cdot MF\)(1)

Ta có: E là trung điểm của AB(cmt)

nên AB=2AE(2)

Ta có: AEMF là hình chữ nhật(cmt)

nên MF=AE(Hai cạnh đối)(3)

Từ (1), (2) và (3) suy ra MN=AB

Xét tứ giác ABMN có 

MN//AB(cùng vuông góc với AC)

MN=AB(cmt)

Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a: Xét tứ giác AEID có

góc AEI=góc ADI=góc DAE=90 độ

nên AEID là hình chữ nhật

b: Xét ΔBAC co DI//AC

nên DI/AC=BI/BC=BD/BA=1/2

=>D là trung điểm của AB

Xét ΔBAC có EI//AB

nên EI/AB=CI/CB=CE/CA=1/2

=>E là trung điểm của AC

=>DI//CE và DI=CE
=>DICE là hình bình hành

c: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>DE//IH

ΔHAC vuông tại H

mà HE là trung tuyến

nên HE=AC/2=DI

Xét tứ giác IHDE có

IH//DE

ID=HE

Do đó: IHDE là hình thang cân

Bài làm

A B C D

Theo hình,

Góc A là góc nhọn

Góc B là góc tù

góc C là góc vuông

Góc D là góc tù

11 tháng 10 2018

a)

Giải bài 32 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Có thể vẽ được vô số tứ giác theo yêu cầu từ đề bài. Chẳng hạn tứ giác ABCD ở hình trên.

Ta có: AC = 6cm, BD = 3,6cm và AC ⊥ BD.

Diện tích tứ giác ABCD là:

Giải bài 32 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà AC = 6cm ; BD = 3,6 cm nên Giải bài 32 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

b) Hình vuông có 2 đường chéo vuông góc nên theo công thức trên, diện tích của nó là: Giải bài 32 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8