Cho hai đa thức A ( x ) = 4 x 2 + 5 x + 3 và B ( x ) = - 4 x 2 + 5 x 7 - 5 x + 3 . Tìm bậc của đa thức C(x) với C(x) = A(x) + B(x)
A. 2
B. 3
C. 5
D. 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
A(x) + B(x) = x4 - 3x + 3 + x4 - x + 128
A(x) +B(x) = (x4 + x4) - (3x+x) +( 3 +128)
A(x) + B(x) = 2x4 - 4x + 131
A(x) -B(x) = x4 - 3x + 3 - (x4 - x + 128)
A(x) -B(x) = x4 - 3x + 3 - x4 + x - 128
A(x) - B(x) = (x4 - x4) - (3x - x) - ( 128 - 3)
A(x) - B(x) = 0 - 2x - 125
A(x) - B(x) = -2x - 125
A(x) = x4 + 3 - 3x
A(x) = x4 - 3x + 3
B(x) = 53 + 3 - 3x2 + x4 - 2x + 3x2 + x
B(x) = (125 + 3) - ( 3x2 - 3x2) + x4 -( 2x - x)
B(x) = 128 - 0 + x4 - x
B(x) = x4 - x + 128
b, A(2) = 24 - 3 \(\times\) 2 + 3
A(2) = 16 - 6 + 3
A(2) = 10 + 3
A(2) = 13
\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)
a)
\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)
b) * Đa thức A(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: -7
+ Hệ số tự do là: 9
* Đa thức B(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: 8
+ Hệ số tự do là: -7
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
`7,`
`a,`
\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)
\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)
`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`
`M(x)=-3x^5+9x^4+6x-1`
\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)
\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)
`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`
`N(x)=3x^5-9x^4+3x-5`
`b,`
`H(x)=M(x)+N(x)`
\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)
`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`
`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`
`H(x)=9x-6`
`G(x)=M(x)-N(x)`
\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)
`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`
`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`
`G(x)=-6x^5+18x^4+3x+4`
`c,`
`H(x)=9x-6`
Hệ số cao nhất của đa thức: `9`
Hệ số tự do: `-6`
`G(x)=-6x^5+18x^4+3x+4`
Hệ số cao nhất của đa thức: `-6`
Hệ số tự do: `4`
`d,`
`H(-1)=9*(-1)-6=-9-6=-15`
`H(1)=9*1-6=9-6=3`
`G(1)=-6*1^5+18*1^4+3*1+4`
`G(1)=-6+18+3+4=12+3+4=15+4=19`
`G(0)=-6*0^5+18*0^4+3*0+4=4`
`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`
`e,`
Đặt `H(x)=9x-6=0`
`-> 9x=0+6`
`-> 9x=6`
`-> x=6 \div 9`
`-> x=2/3`
Vậy, nghiệm của đa thức là `x=2/3.`
`a)`
`@Q(x)=x^3+2x^4-4x-4-5x^4`
`=(2x^4-5x^4)+x^3-4x-4`
`=-3x^4+x^3-4x-4`
`@P(x)-Q(x)=-2x^4+x^3+2x^2-4x-1+3x^4-x^3+4x+4`
`=x^4+2x^2+3`
______________________________________
`b)P(x)-Q(x)=0`
`=>x^4+2x^2+3=0`
`=>(x^2)^2+2x^2+1+2=0`
`=>(x^2+1)^2+2=0`
`=>(x^2+1)^2=-2` (Vô lí vì `(x^2+1)^2 >= 0` mà `-2 < 0`)
Vậy đa thức `P(x)-Q(x)` không có nghiệm
a) Bậc P(x) = 4 + 3 + 1 = 8
Bậc của Q (x) = 2 + 3 + 1 = 6
b) P(x) + Q ( x) = x4 + x3 -2x + 1 + 2x2 -2x3 + x- 5
= x4 -x3 + 2x2 -x - 4
P(x) - Q (x) = x4 +x3 -2x + 1 - 2x2 -2x3 + x - 5
= x4 + 3x 3 -2x2 - 3x + 6
a) Bậc của đa thức P(x) là: 4+3+1=8
Bậc xủa đa thức Q(x) là: 2+3+1=6
b) P(x)+Q(x)=(x4+x3-2x+1)+(2x2-2x3+x-5)
P(x)+Q(x)=x4+x3-2x+1+2x2-2x3+x-5
P(x)+Q(x)=x4-x3+2x2-x-4
P(x)-Q(x)=(x4+x3-2x+1)-(2x2-2x3+x-5)
P(x)-Q(x)=x4+x3-2x+1-2x2+2x3-x+5
P(x)-Q(x)=x4+3x3-2x2-3x+6
Ta có:
Vậy bậc của đa thức C(x) là 7.
Chọn đáp án D