Cho hai đường thẳng song song d 1 và d 2 . Trên đường thẳng d 1 có 10 điểm phân biệt, trên đường thẳng d 2 có 20 điểm phân biệt n ≥ 2 . Hỏi có tất cả bao nhiêu tam giác có đỉnh là các điểm đã cho.
A. 1000
B. 2000
C. 2400
D. 2800
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia
đường thẳng thứ 2 có 10 điểm=>nối với 9 điểm trên đường thẳng thứ nhất được:
10.9=90(đường) vói 2 đường song song đã cho vậy tổng là 92 đường.Chắc vậy đó bn,chúc bn hok tốt
( Tớ giải bài 2 thôi nhé! )
Nếu số cần tìm trừ đi 4 thì số mới chia hết cho cả 5 ; 6 và 7.
Mà BCNN { 5 ; 6 ; 7 } = 210 ( do lớn hơn 4 )
Vậy số cần tìm là: 210 + 4 = 214
Đáp số: 214
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
Các tam giác trên có hai loại:
+ Loại 1: Gồm các tam giác có 2 đỉnh điểm nằm trên a, 1 đỉnh nằm trên b. Số tam giác thuộc loại này là
+ Loại 2: Gồm các tam giác có 1 đỉnh điểm nằm trên a, 2 đỉnh nằm trên b. Số tam giác thuộc loại này là
Vậy theo quy tắc cộng, số tam giác cân tìm là: 120 + 168 = 288.
Chọn C.
Chọn D