Cho x 1 + x 2 + x 3 + x 4 + ... + x 2011 = 0 và
x 1 + x 2 = x 3 + x 4 = ... = x 2009 + x 2010 = 2. Tính x 2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1 + x2 + x3 +.....+ x2011 = 0
=> (x1 + x2) + (x3 + x4) +....+(x2009 + x2010) + x2011 = 0
=> 2 + 2 + 2 +.....+ 2 + x2011 = 0
=> 1005 . 2 + x2011 = 0
=> 2010 + x2011 = 0
=> x2011 = -2010
=> Không có giá trị nào của x thỏa mãn đề bài
x1 + x2 + x3 +.....+ x2011
= (x1 + x2) + (x3 + x4) +....+ ( x2009 + x2010) + x2011
= 2 + 2 + 2+.....+ 2 + x2011
= 1005 . 2 + x2011
=2010 + x2011 = 0
=> x2011 = -2010
=> Không có giá trị của x thỏa mãn đề bài
Ta có \(x_1+x_2+x_3+...+x_{2010}+x_{2011}=0\)
Mà \(x_1+x_2=x_3+x_4=...=x_{2009}+x_{2010}=2\)
Thế vào ta có
\(2+2+2+2+...+2+x_{2011}=0\)
Ta có số số hạng là
\(2010-1+1=2010\)(số hạng)
Mà 1 cặp gồm 2 số hạng nên có số cặp là
\(\frac{2010}{2}=1005\)(cặp)
Vì mỗi cặp có tổng là 2 nên
ta có
\(1005\cdot2+x_{2011}=0\)
Suy ra \(2010+x_{2011}=0\)
Suy ra \(x_{2011}=0-2010=-2010\)
Vậy \(x_{2011}=-2010\)
Ta có : (x1 + x2 )+(x3+x4)+.......+(x2009 +x2010) +x2011 =0 có 2010 : = 1005 dấu ngoặc
=> 2 + 2 + .......... + 2 + x2011 =0
1005.2 + x2011 =0
=> x2011 = -2010
\(x_1+x_2+...+x_{2013}=0\)
=> \(\left(x_1+x_2\right)+\left(x_3+x_4\right)+...+\left(x_{2011}+x_{2012}\right)+x_{2013}=0\)
=> \(2+2+...+2+x_{2013}=0\)
=> \(2.1006+x_{2013}=0\Rightarrow2012+x_{2013}=0\Rightarrow x_{2013}=-2012\)
Ta có: ( x 1 + x 2 ) + ( x 3 + x 4 ) + ... + ( x 2009 + x 2010 )
= 2 + 2 + ... + 2 ( 1005 số hạng)
⇒ x 1 + x 2 + x 3 + ... + x 2009 + x 2010 = 2010
Mà x 1 + x 2 + x 3 + ... + x 2011 = 0
Nên 2010 + x 2011 = 0. Vậy x 2011 = -2010