Chứng tỏ |a| +|b| nhỏ hơn hoặc bằng |a+b| với mọi a,b thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lal + lbl >= la + bl
<=> a2 + 2lallbl + b2 >= a2 + 2ab + b2
<=> lallbl >= ab (đúng với mọi a; b thuộc Z)
a, giá trị tuyệt đối của a+b luôn nhỏ hơn giá trị tuyệt đối của a cộng giá trị tuyệt đối củab
dấu bằng xảy ra khi và chỉ khi
a=b=0
b, - /a/ < a ( với mọi a thuộc Z)
dấu bằng xảy ra khi a=0
tương tự ta có
-/a/ < a
dấu bằng xảy ra khi
a=0
Giải thích các bước giải:
a2=a.aa2=a.a
Th1 a<0
=>−a2=−(−a)(−a)−a2=−(−a)(−a)
a2>=0với mọi a a2>=0với mọi a
=> −a2=a2.(−1)<=0−a2=a2.(−1)<=0
a2a2=a.a
a<0
a2=(−a)(−a)=a2a2=(−a)(−a)=a2 >= 0 với mọi a
a>=0
a2>=0
Vt lại cho dễ hiểu
Ta có \(\hept{\begin{cases}a^2=a.a\\-\left(a^2\right)=-\left(a.a\right)\end{cases}}\)\(\forall a\in Z\)
Th1: \(a\in Z;a\ge0\)
Khi đó a . a ≥ 0
\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a.a\right)\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a^2\right)\le0\end{cases}}\) (1)
TH2: \(a\in Z;a< 0\)
Khi đó a . a > 0
\(\Leftrightarrow\hept{\begin{cases}a^2>0\\-\left(a^2\right)< 0\end{cases}}\) (2)
Từ (1) và (2) => đpcm
T chỉ vt lại theo bài của bạn Linh thôi đóa
Mình ghi lại đề nè:
CMR: Với mọi \(a;b\in Q\)thì \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
Nhanh, gọn, lẹ, dễ hiểu :v
Thế thôi :V
Vì x<y nên a<b.Ta có x=a/m=2a/2m,y=b/m=2b/2m
Chọn số z=2a+1/2m .Do 2a<2a+1=>x<z(1)
Do a<b nên a+1 nên a+1 nhỏ hơn hoặc bằng b=>2a+2<=2b
Ta có 2a+1<2a+2<=2b nên 2a+1<2b. Do đó z<y (2)
Từ 1 và 2 suy ra x<z<y
LẤY VÍ DỤ CỤ THỂ ĐI BẠN