K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta cũng có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (MIJ) ∩ (ABD) = d = Mt và Mt // AB // IJ

b) Ta có: Mt // AB ⇒ Mt ∩ BD = N

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì K ∈ IN ⇒ K ∈ (BCD)

Và K ∈ JM ⇒ K ∈ (ACD)

Mặt khác (BCD) ∩ (ACD) = CD do đó K ∈ CD. Do vậy K nằm trên hai nửa đường thẳng Cm và Dn thuộc đường thẳng CD. ( Để ý rằng nếu M là trung điểm của AD thì sẽ không có điểm K.)

c) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

25 tháng 5 2017

a) \(\left\{{}\begin{matrix}M\in\left(MIJ\right)\\M\in\left(AD\right)\Rightarrow M\in\left(ABD\right)\end{matrix}\right.\) \(\Rightarrow M\in\left(MIJ\right)\cap\left(ABD\right)\)

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

7 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Nhận xét:

Do giả thiết cho IJ không song song với CD và chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.

Gọi K = IJ ∩ CD.

Ta có: M là điểm chung thứ nhất của (ACD) và (IJM);

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (MIJ) ∩ (ACD) = MK

b) Với L = JN ∩ AB ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)

Gọi P = JL ∩ AD, Q = PM ∩ AC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên Q là điểm chung thứ hai của (MNJ) và (ABC)

Vậy LQ = (ABC) ∩ (MNJ).

a: \(I\in AD\subset\left(JAD\right)\)

\(I\in IB\subset\left(IBC\right)\)

Do đó: \(I\in\left(JAD\right)\cap\left(IBC\right)\left(1\right)\)

\(J\in BC\subset\left(IBC\right)\)

\(J\in JA\subset\left(JAD\right)\)

Do đó: \(J\in\left(IBC\right)\cap\left(JAD\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(JAD\right)\cap\left(IBC\right)=JI\)

b: Xét ΔABD có

M,I lần lượt là trung điểm của AB,AD

=>MI là đường trung bình của ΔABD

=>MI//BD

Xét (IMN) và (DBN) có

\(N\in\left(IMN\right)\cap\left(DBN\right)\)

IM//BD

Do đó: (IMN) giao (DBN)=xy, xy đi qua N và xy//IM//BD

c: Chọn mp(ABD) có chứa BD

\(I\in AD\subset\left(ABD\right)\)

\(I\in NI\subset\left(NIJ\right)\)

Do đó: \(I\in\left(ABD\right)\cap\left(INJ\right)\)(3)

Trong mp(ABC), gọi K là giao điểm của JN với AB

\(K\in AB\subset\left(ABD\right)\)

\(K\in JN\subset\left(INJ\right)\)

Do đó: \(K\in\left(ABD\right)\cap\left(NIJ\right)\)(4)

Từ (3) và (4) suy ra \(\left(ABD\right)\cap\left(NIJ\right)=IK\)

Gọi E là giao điểm của BD với IK

=>E là giao điểm của BD với mp(NIJ)

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

11 tháng 7 2019

Đáp án C

Mặt phẳng (ABD) cắt mặt phẳng (IJK) theo giao tuyến song song với AB do IJ//AB 

21 tháng 11 2023

Trong mp(BCD), gọi M là giao điểm của KJ với DC

\(M\in KJ\subset\left(IJK\right)\)

\(M\in CD\subset\left(ACD\right)\)

Do đó: \(M\in\left(IJK\right)\cap\left(ACD\right)\left(1\right)\)

\(I\in AC\subset\left(ACD\right);I\in\left(IJK\right)\)

=>\(I\in\left(ACD\right)\cap\left(IJK\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(IJK\right)\cap\left(ACD\right)=MI\)

Xét ΔCAB có

\(\dfrac{CI}{CA}=\dfrac{CJ}{CB}=\dfrac{1}{2}\)

nên IJ//AB

\(K\in BD\subset\left(ABD\right);K\in\left(IJK\right)\)

=>\(K\in\left(ABD\right)\cap\left(IJK\right)\)

Xét (ABD) và (IJK) có

\(K\in\left(ABD\right)\cap\left(IJK\right)\)

IJ//AB

Do đó: (ABD) giao (IJK)=xy, xy đi qua K và xy//IJ//AB

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

10 giây suy nghĩ cấm tìm trên mạng

hồi sáng tớ đố bài này rùi dễ có trên mạng mà cấm tìm đó

4
4 tháng 10 2016

Một câu hỏi quá dài , quá nhiều lại quá khó hiểu . Bạn chia thành từng bài đi cho giảm mệt!

4 tháng 10 2016

hại não o_o

11 tháng 4 2019

Giải bài 8 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Trong mp(ABD): MP không song song với BD nên MP ∩ BD = E.

E ∈ MP ⇒ E ∈ (PMN)

E ∈ BD ⇒ E ∈ (BCD)

⇒ E ∈ (PMN) ∩ (BCD)

Dễ dàng nhận thấy N ∈ (PMN) ∩ (BCD)

⇒ EN = (PMN) ∩ (BCD)

b) Trong mp(BCD) : gọi giao điểm EN và BC là F.

F ∈ EN, mà EN ⊂ (PMN) ⇒ F ∈ (PMN)

 

⇒ F = (PMN) ∩ BC.