Cho đường tròn tâm O, hai dây AB và CD vuông góc với nhau ở M. Biết AB = 18 cm, CD = 14 cm, MC =4 cm. Hãy tính khoảng cách từ tâm O đến mỗi dây AB và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi OH,OK là khoảng cách từ O đến mỗi dây
Ta có: OH = OK = 1cm
Tính được R = 10 cm
a, Gọi OH là khoảng cách từ O đến CD => MH = 4cm
Tính được OH = 4 3 3 cm
b, Tính được OD = 4 39 3 cm
a) Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
\(\widehat{BCD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
Do đó: \(\widehat{BAD}=\widehat{BCD}\)(Hệ quả góc nội tiếp)
hay \(\widehat{IAD}=\widehat{ICB}\)
Xét ΔIAD và ΔICB có
\(\widehat{IAD}=\widehat{ICB}\)(cmt)
\(\widehat{AID}=\widehat{CIB}\)(hai góc đối đỉnh)
Do đó: ΔIAD\(\sim\)ΔICB(g-g)
Suy ra: \(\dfrac{IA}{IC}=\dfrac{ID}{IB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(IA\cdot IB=IC\cdot ID\)(đpcm)
Gọi H và K lần lượt là hình chiếu của O trên AB và CD
Tính được OH = MK = 3cm
OD = OB = 3 10 cm
Từ đó tính được OK = 41 cm