GIÚP MÌNH VỚI Ạ
Cho tam giác ABC.Gọi M là trung điểm của AB,M thuộc BC sao cho vecto BM bằng 2 lần vecto BC.Phân tích vecto BM theo vecto AB và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{BM}=\dfrac{\overrightarrow{BA}+\overrightarrow{BC}}{2}=\dfrac{\overrightarrow{BA}+\overrightarrow{BA}+\overrightarrow{AC}}{2}=-\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)
a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}\)(D là trung điểm của BC) (1)
\(\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AK}\)(K là trung điểm của MN) (2)
Lấy (1) trừ (2) có: \(\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=2\left(\overrightarrow{AD}-\overrightarrow{AK}\right)\)
⇔\(\dfrac{\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\overrightarrow{AM}+\overrightarrow{AN}\right)}{2}\)=\(\overrightarrow{KD}\)
⇔\(\dfrac{\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\right)}{2}\)=\(\overrightarrow{KD}\)
⇔\(\dfrac{\overrightarrow{AB}+\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}}{2}\)=\(\overrightarrow{KD}\)
⇔\(\dfrac{\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}}{2}\)=\(\overrightarrow{KD}\)
⇔\(\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)=\(\overrightarrow{KD}\)
\(BM=2AM\Rightarrow BM=\dfrac{2}{3}AB\Rightarrow\overrightarrow{MB}=\dfrac{2}{3}\overrightarrow{AB}\)
\(AN=3CN\Rightarrow CN=\dfrac{1}{4}CA\Rightarrow\overrightarrow{CN}=\dfrac{1}{4}\overrightarrow{CA}\)
Ta có:
\(\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CA}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\left(\overrightarrow{CB}+\overrightarrow{BA}\right)\)
\(=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CB}+\dfrac{1}{4}\overrightarrow{BA}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}-\dfrac{1}{4}\overrightarrow{BC}-\dfrac{1}{4}\overrightarrow{AB}\)
\(=\dfrac{5}{12}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{BC}\)
Lời giải:
\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=\frac{1}{3}\overrightarrow{BA}+\frac{3}{4}\overrightarrow{AC}\)
\(=\frac{-1}{3}\overrightarrow{AB}+\frac{3}{4}(\overrightarrow{AB}+\overrightarrow{BC})=\frac{5}{12}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{BC}\)
\(\overrightarrow{BM}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
Dạ giải chi tiết được không ạ tại em đang cần gấp í ạ