K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Chứng minh DABM = DECM

Chứng minh SABM - SECM'

Þ SABCD = SAED

18 tháng 2 2020

A B C D J M E G O I H N K F

+) Kẻ: AJ // CI //EF; I; J thuộc BD và M thuộc EF

Xét \(\Delta\)BAJ  có: FM // AJ 

=> \(\frac{BA}{BF}=\frac{BJ}{BM}\)

Xét  \(\Delta\)BCI có: ME // IC 

=> \(\frac{BC}{BE}=\frac{BI}{BM}\)

Từ hai điều trên => \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BJ}{BM}+\frac{BI}{BM}=\frac{BI+BJ}{BM}\)(1)

Xét \(\Delta\)AJO và \(\Delta\)CIO  có:

OA = OC ( ABCD là hình bình hành) 

^AOJ = ^COI ( đối đỉnh)

^AJO = ^CIO ( AJ // CI , so le trong )

=> \(\Delta\)AJO = \(\Delta\)CIO ( g-c-g)

=> JO = IO 

KHi đó BI + BJ = BO + OI + BO - JO  = 2 BO +  (IO - JO) = 2 BO = 2.2. BM = 4BM ( vì M là trung điểm BO )

=> BI + BJ = 4BM Thế vào (1) 

=> \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{4BM}{BM}=4\)(2)

+) Kẻ BH // BG //FK  với H; G thuộc AC

Chứng minh tương tự như trên ta suy ra: \(\frac{BA}{AF}+\frac{AD}{AK}=4\)(3)

Cộng (2) + (3) vế theo vế:

\(\frac{BA}{BF}+\frac{BC}{BE}+\frac{BA}{AF}+\frac{AD}{AK}=8\)mà AD = BC

=> \(AB\left(\frac{1}{BF}+\frac{1}{AF}\right)+BC\left(\frac{1}{BE}+\frac{1}{AK}\right)=8\)(4)

Mặt khác: \(\frac{1}{BF}+\frac{1}{AF}=\frac{1^2}{BF}+\frac{1^2}{AF}\ge\frac{\left(1+1\right)^2}{BF+AF}=\frac{4}{AB}\) và \(\frac{1}{BE}+\frac{1}{AK}\ge\frac{4}{BE+AK}\)

KHi đó: \(8\ge AB.\frac{4}{AB}+BC.\frac{4}{BE+AK}\)

<=> \(BE+AK\ge BC\)

Dấu "=" xảy ra <=> BF = AF  và BE = AK 

Hay F là trung điểm AB.

24 tháng 1 2019