Phân tích các đa thức sau thành nhân tử:
a) x 2 ( x - 3 ) 2 - ( x - 3 ) 2 - x 2 +1;
b) x 3 - 2 x 2 + 4x - 8;
c) ( x + y ) 3 - ( x - y ) 3 ;
d) 2 a 2 (x + y + z) - 4ab (x + y + z) + 2 b 2 (x + y + z).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
a) \(x^2-xy+x-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+2xy-4x-8y\)
\(=x\left(x+2y\right)-4\left(x+2y\right)\)
\(\left(x-4\right)\left(x+2y\right)\)
c) \(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
\(a,=2xy\left(2y-x\right)\\ b,=x^2\left(x-4\right)+5\left(x-4\right)=\left(x^2+5\right)\left(x-4\right)\\ c,=\left(x-y\right)\left(x^2-25\right)=\left(x-y\right)\left(x-5\right)\left(x+5\right)\)
\(a,=\left(x-2\right)\left(9x^2y^2-6x^3y^2\right)=3x^2y^2\left(3-2x\right)\left(x-2\right)\\ b,=5x\left(x^2-y^2\right)+20x\left(x+y\right)=5x\left(x-y\right)\left(x+y\right)+20x\left(x+y\right)\\ =5\left(x+y\right)\left(x^2-xy+4x\right)\\ c,=8x^2+2x-12x-3=2x\left(4x+1\right)-3\left(4x+1\right)=\left(2x-3\right)\left(4x+1\right)\)
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
Lời giải:
a.
$x^2-7x+6=(x^2-x)-(6x-6)=x(x-1)-6(x-1)=(x-1)(x-6)$
b.
$x-3\sqrt{3}x-12\sqrt{3}$ không phân tích được thành nhân tử
c.
$x^2+4x-2$ không phân tích được thành nhân tử với các hệ số nguyên.
`a, 9x^2 - 16 = (3x+4)(3x-4)`
`b, 4x^2 - 12xy + 9y^2 = (2x-3y)^2`
`c, t^3-8 = (t-2)(t^2 - 2t + 4)`
`d, 2ax^3y^3 + 2a = 2a(x^3y^3 + 1) = 2a(xy+1)(x^2y^2 - xy + 1)`
a) \(\left(9x^2-16\right)=\left(3x-4\right)\left(3x+4\right)\)
b) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
c) \(t^3-8=\left(t-2\right)\left(t^2+2t+4\right)\)
d) \(2ax^3y^3+2a=2a\left(x^3y^3+1\right)\)
`a, a^3 - a^2b + a - b`
`= a^2(a-b) + (a-b)`
`= (a^2+1)(a-b)`
`b, x^2 - y^2 + 2y - 1`
`= x^2 - (y-1)^2`
`= (x-y+1)(x+y-1)`
`a, P = 2x(3 - x^2)`
`b, Q = 5x^2(x-3y)`
`c, R = xy(3x^2y^2 - 6y^2z + 1)`
a) \(P=6x-2x^3\)
\(P=2x\left(3+x^2\right)\)
b) \(Q=5x^3-15x^2y\)
\(Q=5x^2\left(x-3y\right)\)
c) \(R=3x^3y^3-6xy^3z+xy\)
\(R=xy\left(3x^2y^2-6y^2z+1\right)\)
`a, 4x^3 - 16x = 4x(x^2-4) = 4x(x-2)(x+2)`
`b, x^4 - y^4 = (x^2-y^2)(x^2+y^2) = (x-y)(x+y)(x^2+y^2)`
`c, xy^2 + x^2y + 1/4y^3`
`= y(xy + x^2 + 1/4y^2)`
`d, x^2 + 2x - y^2 + 1 = (x+1)^2 - y^2`
`= (x+1+y)(x+1-y)`
a) (x - 1)(x + l)(x - 2)(x - 4). b) (x - 2)( x 2 + 4).
c) 2y(3 x 2 + y 2 ). d) 2(x + y + z) ( a - b ) 2 .
a. \(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)
\(=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left[\left(x-3\right)^2-1\right]\left(x^2-1\right)\)
\(=\left(x-3+1\right)\left(x-3-1\right)\left(x+1\right)\left(x-1\right)\)
\(=\left(x-2\right)\left(x-4\right)\left(x+1\right)\left(x-1\right)\)
b. \(x^3-2x^2+4x-8\)
\(=\left(x^3+4x\right)-\left(2x^2+8\right)\)
\(=x\left(x^2+4\right)-2\left(x^2+4\right)\)
\(=\left(x-2\right)\left(x^2+4\right)\)
c. \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3\)
\(=2y\left(3x^2+y^2\right)\)
d. \(2a^2\left(x+y+z\right)-4ab\left(x+y+z\right)+2b^2\left(x+y+z\right)\)
\(=\left(2a^2-4ab+2b^2\right)\left(x+y+z\right)\)
\(=2\left(a^2-2ab+b^2\right)\left(x+y+z\right)\)
\(=2\left(a-b\right)^2\left(x+y+z\right)\)