K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

Vì x < y nên Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 mà m > 0 nên a < b. Ta có

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Chọn số Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7. Do 2a < 2a + 1 và m > 0 nên Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 hay x < z. (1)

Do a < b và a; b ∈ Z nên a + 1 ≤ b suy ra 2a + 2 ≤ 2b.

Ta có 2a + 1 < 2a + 2 ≤ 2b nên 2a + 1 < 2b, do đó Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 hay z < y. (2)

Từ (1) và (2) suy ra: x < z < y

12 tháng 6 2017

theo đề bài ta có :

\(x=\frac{a}{m}\)\(y=\frac{b}{m}\)( a,b,m \(\in\)Z , m > 0 )

vì x < y \(\Leftrightarrow\)\(\frac{a}{m}< \frac{b}{m}\)

\(\Rightarrow a< b\Rightarrow a+a< b+a\Rightarrow2a< a+b\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\left(1\right)\)

Vì a < b \(\Rightarrow\)a + b < b + c

\(\Rightarrow a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(x< z< y\)

12 tháng 6 2017

Theo bài ra ta có \(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)

\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)

Từ x < y, ta lại có \(\frac{a}{2m}< \frac{b}{2m}\Rightarrow\frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\) (2)

Từ (1) và (2) suy ra đpcm

17 tháng 8 2016

Ta có x=\(\frac{a}{m}=\frac{2a}{2m}\) , y=\(\frac{b}{m}=\frac{2b}{2m}\)

Vì x<y nên a<b

Có a<b  =>2a<a+b (1)

Có a<b =>a+b<2b (2)

Từ (1) và (2) =>2a<a+b<2b  =>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

=>x<y<z ( đpcm)

20 tháng 8 2018

ta có: x<y hay \(\frac{a}{n}< \frac{b}{m}\Rightarrow a< b\)

so sánh x,y,z ta chuyển chúng cùng mẫu: 2m

\(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\) và \(z=\frac{\left(a+b\right)}{2m}\)

mà a<b

suy ra: a+a<b hay 2a<a+b

=> x<z             (1)

mà a<b

suy ra: a+b<b+b   hay a+b<2b

=> z<y              (2)

từ (1) và (2) => x<z<y

vậy x<z<y

hpk tốt

17 tháng 6 2015

Ta có:x=\(\frac{a}{m}\)<=>x=\(\frac{2a}{2m}\)

         y=\(\frac{b}{m}=>y=\frac{2b}{2m}\)

         z=\(\frac{\left(a+b\right)}{2m}\)

mà x<y  nên a<b (với m>0)

=>a+a<a+b<b+b

hay 2a<a+b<2b

=>\(\frac{2a}{2m}

19 tháng 8 2016

Ta có

\(x=\frac{a}{m}=\frac{2a}{2m}\) ; \(y=\frac{b}{m}=\frac{2b}{2m}\)

Vì a<b nên 2a<a+b (1)

Vì a<b nên a+b<2b (2)

Từ (1) và (2) =>2a<a+b<2b

=>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

=>x<z<y ( đpcm)

19 tháng 8 2016

đpcm la gì z

24 tháng 8 2018

cm x < z:  z = (a + b)/2m > (a + a)/2m = 2a/2m = a/ m = x => z >x

cm : z < y:  z = (a + b)/2m < (b + b)/2m = 2b/2m = b/m = y

24 tháng 8 2018

Ta có : x=a/m : y=b/m (m>0)

Vì x<y =>a<b

x=a/m=2a/2m=a+a/2m<a+b/2m(a<b)(1)

y=b/m=2b/2m=b+b/2m>a+b/2m(b>a)(2)

Từ (1)(2)=>a+a/2m<a+b/2m + b+b/2m

=>x<z<y