K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

TXĐ: R

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′ = 0 ⇔ x = 64

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy ta có y CD  = y(0) = 0 và  y CT  = y(64) = -32.

NV
22 tháng 7 2021

Xét trên các miền xác định của các hàm (bạn tự tìm miền xác định)

a.

\(y'=\dfrac{1}{2\sqrt{x-3}}-\dfrac{1}{2\sqrt{6-x}}=\dfrac{\sqrt{6-x}-\sqrt{x-3}}{2\sqrt{\left(x-3\right)\left(6-x\right)}}\)

\(y'=0\Rightarrow6-x=x-3\Rightarrow x=\dfrac{9}{2}\)

\(x=\dfrac{9}{2}\) là điểm cực đại của hàm số

b.

\(y'=1-\dfrac{9}{\left(x-2\right)^2}=0\Rightarrow\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

\(x=-1\) là điểm cực đại, \(x=5\) là điểm cực tiểu

c.

\(y'=\sqrt{3-x}-\dfrac{x}{2\sqrt{3-x}}=0\Rightarrow2\left(3-x\right)-x=0\)

\(\Rightarrow x=2\) 

\(x=2\) là điểm cực đại

NV
22 tháng 7 2021

d.

\(y'=\dfrac{-x^2+4}{\left(x^2+4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

\(x=-2\) là điểm cực tiểu, \(x=2\) là điểm cực đại

e.

\(y'=\dfrac{-8\left(x^2-5x+4\right)}{\left(x^2-4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

\(x=1\) là điểm cực tiểu, \(x=4\) là điểm cực đại

30 tháng 3 2018

Chọn D

Hàm số có 2 điểm cực trị  x 1 , x 2

Chia y cho y’ ta được :

Điểm cực trị tương ứng :

Với x 1 + x 2 = 4 x 1 x 2 = m + 2 nên  y 1 y 2 = ( m - 2 ) 2 ( 4 m + 17 )

Hai cực trị cùng dấu  ⇔ y 1 y 2 > 0

Kết hợp đk :  - 17 4 < m < 2

22 tháng 4 2019

30 tháng 10 2019

TXĐ: R

y′ = 2(x + 2). x - 3 3  + 3 x + 2 2 . x - 3 2  = 5x(x + 2). x - 3 2

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra y CĐ  = y(-2) = 0;  y CT  = y(0) = -108.