Cho tam giác ABC cân tại A. Trên tia đối BC lấy điểm D, Trên tia đối của tia CB lấy điểm E sao cho ∠BAD = ∠CAE. Kẻ BH vuông góc với AD (H ∈ AD). kẻ CK vuông góc với AE (K ∈ AE). Chứng minh rằng : BD = CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BHA và ∆CKA có
∠AHB = ∠AKC = 90º
AB = AC ( vì tam giác ABC cân tại A).
∠HAB = ∠KAC ( giả thiết)
Suy ra ΔBHA = ΔCKA (cạnh huyền – góc nhọn), suy ra BH = CK.
a) Do ΔABC cân tại A
=> AB = AC; góc ABC=góc ACB
Lại có: góc ABC+ góc ABD = 180o (kề bù)
góc ACB + góc ACE = 180o (kề bù)
=> góc ABD = góc ACE
Xét ΔADB và ΔAEC có:
góc BAD = góc CAE (gt)
AB = AC (cmt)
góc ABD = góc ACE (cmt)
=> ΔADB = ΔAEC (g.c.g)
=> BD = CE (2 cạnh tg ứng) đpcm
b) Vì ΔADB = ΔAEC (câu a)
=> góc ADB = góc AEC (2 góc t/ư)
hay góc HDB = góc KEC
Xét ΔBHD vuông tại H và ΔCKE vuông tại E có:
BD = CE (câu a)
góc HDB = góc KEC(cmt)
=> ΔBHD = ΔCKE (ch - gn)
=> BH = CK (2 cạnh tg ứng) (đpcm)
a: Xét ΔABD và ΔACE có
\(\widehat{BAD}=\widehat{CAE}\)
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHDB=ΔKEC
Suy ra: BH=CK
c: Ta có: ΔHDB=ΔKEC
nên \(\widehat{HBD}=\widehat{KCE}\)
mà \(\widehat{IBC}=\widehat{HBD}\)
và \(\widehat{ICB}=\widehat{KCE}\)
nên \(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
mình không biết vẽ hình ở đây :v
a, ΔABC cân tại A (gt) => ^ABC = ^ACB (tính chất)
^ABC + ^ABD = 180 (kề bù)
^ACB + ^ACE = 180 (kề bù)
=> ^ABD = ^ACE
xét ΔABD và ΔACE có : ^BAD = ^CAE (gt)
AB = AC vì ΔABC cân tại A (gt)
=> ΔABD = ΔACE (g-c-g)
=> BD = CE (định nghĩa)
b, xét ΔBHD và ΔCKE có : BD = CE (Câu a)
^DHB = ^EKC = 90
^ADB = ^AEC do ΔABD = ΔACE (Câu a)
=> ΔBHD = ΔCKE (ch-gn)
=> BH = CK (định nghĩa)
Hình bn tự vẽ nha !!!
a) Có: \(\widehat{ABD}=180^o-\widehat{ABC};\widehat{ACE}=180^o-\widehat{ACB}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta\)ABC cân tại A) => \(\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta\)ABD và \(\Delta\)ACE, có:
\(\widehat{BAD}=\widehat{CAE}\)(gt) => \(\Delta\)ABD = \(\Delta\)ACE
AB = AC (\(\Delta\)ABC cân tại A) (gcg)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
=> BD = CE (2ctư)
b) Xét \(\Delta\)ABH và \(\Delta\)ACK, có:
\(\widehat{H}=\widehat{K}=90^o\)
\(AB=AC\) => \(\Delta\)ABH = \(\Delta\)ACK
\(\widehat{BAH}=\widehat{CAK}\) (CH-GN)
=> BH = CK (2ctư)
Vì ΔABC cân tại A nên∠(ABC) =∠(ACB) (tính chất tam giác cân)
Ta có: ∠(ABC) +∠(ABD) =180o(hai góc kề bù)
∠(ACB) +∠(ACE) =180o(hai góc kề bù)
Suy ra: ∠(ABD) =∠(ACE)
Xét ΔABD và ΔACE, ta có:
AB = AC (gt)
∠(ABD) =∠(ACE) (chứng minh trên)
BD=CE (gt)
Suy ra: ΔABD= ΔACE (c.g.c)
⇒∠D =∠E (hai góc tương ứng)
Xét hai tam giác vuông ΔBHD và ΔCKE, ta có:
∠(BHD) =∠(CKE) = 90º
BD=CE (gt)
∠D =∠E (chứng minh trên)
Suy ra: ΔBHD= ΔCKE (cạnh huyền – góc nhọn)
Suy ra: BH = CK (hai cạnh tương ứng)
a: Xét ΔABD và ΔACE có
AB=AC
ˆABD=ˆACE
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE và ˆD=ˆE
Xét ΔHBD vuông tại H và ΔKEC vuông tại K có
BD=CE
ˆD=ˆE
Do đó: ΔHBD=ΔKCE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
ˆHAB=ˆKAC
Do đó: ΔABH=ΔACK
còn c chờ tý
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE
=>BC//HK
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó; ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
b: Ta có: ΔABH=ΔACK
nên \(\widehat{ABH}=\widehat{ACK}\)
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
+) Do tam giác ABC cân tại A nên ∠ABC = ∠ACB (1)
Lại có; ∠ABC + ∠ABD = 180º ( hai góc kề bù) (2)
∠ACB + ∠ACE = 180º ( hai góc kề bù) (3)
Từ (1); (2); (3) suy ra: ∠ABD = ∠ACE
+) Xét ΔABD và ΔACE có:
∠DAB = ∠EAC ( giả thiết)
AB = AC (vì tam giác ABC cân tại A)
∠ABD = ∠ACE ( chứng minh trên )
⇒ ΔABD = ΔACE (g.c.g)
⇒ BD = CE ( hai cạnh tương ứng)..