Cho tam giác ABC đều có độ dài các cạnh là 6 cm . Gọi M,N lần lượt là trung điểm của AB,AC. Gọi O là giao điểm của BN và CM
a, Tính độ dài MN
b,tính độ dài AO
c,chứng minh tứ giác MNCB là hình thang cân
HỘ MK ZỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)
Vậy: MNCB là hình thang (đpcm)
==========
b/ Do MN là đường trung bình của △ABC
Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)
==========
c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)
- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)
Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)
b: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
Xét tứ giác MNCB có MN//BC
nên MNCB là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên MNCB là hình thang cân
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
b: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
Hình thang BMNC có \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
c: Ta có: \(MN=\dfrac{BC}{2}\)
mà \(MN=\dfrac{MP}{2}\)
nên BC=MP
Ta có: MN//BC
P\(\in\)MN
Do đó: MP//BC
Xét tứ giác MBCP có
MP//BC
MP=BC
Do đó: MBCP là hình bình hành
Sửa đề: Chứng minh AHCQ là hình chữ nhật
Xét tứ giác AHCP có
N là trung điểm chung của AC và HP
=>AHCP là hình bình hành
Hình bình hành AHCP có \(\widehat{AHC}=90^0\)
nên AHCP là hình chữ nhật
d: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔBAC có
H,M lần lượt là trung điểm của BC,BA
=>HM là đường trung bình của ΔBAC
=>HM//AC và HM=AC/2
Tứ giác AMHC có HM//AC
=>AMHC là hình thang
e:
Ta có: \(HM=\dfrac{AC}{2}\)
\(AN=\dfrac{AC}{2}\)
Do đó: HM=AN
Xét tứ giác AMHN có
HM//AN
HM=AN
Do đó: AMHN là hình bình hành
=>AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: AHCQ là hình chữ nhật
=>AQ//HC và AQ=HC
Ta có: AQ//HC
H\(\in\)BC
Do đó: AQ//HB
ta có: AQ=HC
HB=HC
Do đó: AQ=HB
Xét tứ giác ABHQ có
AQ//BH
AQ=BH
Do đó: ABHQ là hình bình hành
=>AH cắt BQ tại trung điểm của mỗi đường
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)
b) Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang(Định nghĩa hình thang)
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
HỘ IK
SAO CHẢ AI LM HỘ THÉEE