Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Tính số đo góc ABD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
a, Xét \(\Delta AMC\) và \(\Delta DMB\) có:
AM = MD ( gt )
\(\widehat{BMD}=\widehat{AMC}\)( hai góc đối đỉnh )
BM = CM ( vì AM là trung tuyến )
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
b,\(\Delta AMC=\Delta DMB\left(cmt\right)\Rightarrow\widehat{MBD}=\widehat{C}\)
Xét \(\Delta ABC\) có \(\widehat{A}=90^o\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)(định lý )
mà \(\widehat{MBD}=\widehat{C}\Rightarrow\widehat{ABC}+\widehat{MBD}=90^o\)
hay \(\widehat{ABD}=90^0\)
c,\(\Delta AMC=\Delta DMB\left(cmt\right)\Rightarrow BD=AC\)
Xét \(\Delta ABC\) và \(\Delta BAD\) có:
AB cạnh chung
\(\widehat{ABD}=\widehat{BAC}=90^o\)
BD = AC ( cmt )
\(\Rightarrow\Delta ABC=\Delta BAD\left(c.g.c\right)\)
\(\Rightarrow BC=AD\)
Vì AM = MD => \(AM=\frac{1}{2}AD\)
mà BC = AD ( cmt )
\(\Rightarrow AM=\frac{1}{2}BC\)
a) tam giác MAC = tam giác BAD theo trường hợp cạnh góc cạnh
Có: MC = MB (AM trung tuyến)
AMC = DMB (2 góc đối đỉnh)
MA = MD (theo giả thiết)
=> 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b)
Tam giác ABC có góc A=90 độ
Suy ra: góc ACB+ góc CBA= 90 độ
Mà : góc ACB (hay góc ACM) = DBM (2 tam giác bằng nhau, chứng minh trên)
Suy ra: góc DBM + CBA = 90 độ
Hay DBA=90 độ
Xét ΔAMC và ΔDMB, ta có:
CM = BM (gt)
∠(AMC) = ∠(BMD) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy ∠(ABD) = 90o.